我想使用精彩的Scikit-Learn软件包,但是当我尝试
时class LogisticMe(linear_model.LogisticRegression):
def __init__(self):
super(LogisticMe,self).__init__(self)
我收到以下错误: 'LogisticMe'对象没有属性'upper'
我的新类不应该继承父级的所有属性吗?
完整筹码:
AttributeError Traceback (most recent call last)
<ipython-input-4-0ddd1566e0dd> in <module>()
----> 1 l = logistic_me.LogisticMe()
/home/michael/Python/Uplift/logistic_me.py in __init__(self)
9 def __init__(self):
10
---> 11 super(LogisticMe,self).__init__(self)
12
13 def fit(self,X,T,y):
/home/michael/anaconda/lib/python2.7/site-packages/sklearn/linear_model /logistic.pyc in __init__(self, penalty, dual, tol, C, fit_intercept, intercept_scaling, class_weight, random_state)
102 penalty=penalty, dual=dual, loss='lr', tol=tol, C=C,
103 fit_intercept=fit_intercept, intercept_scaling=intercept_scaling,
--> 104 class_weight=class_weight, random_state=random_state)
105
106 def predict_proba(self, X):
/home/michael/anaconda/lib/python2.7/site-packages/sklearn/svm/base.pyc in __init__(self, penalty, loss, dual, tol, C, multi_class, fit_intercept, intercept_scaling, class_weight, verbose, random_state)
608
609 # Check that the arguments given are valid:
--> 610 self._get_solver_type()
611
612 def _get_solver_type(self):
/home/michael/anaconda/lib/python2.7/site-packages/sklearn/svm/base.pyc in _get_solver_type(self)
626 "`crammer_singer`")
627 solver_type = "P%s_L%s_D%d" % (
--> 628 self.penalty.upper(), self.loss.upper(), int(self.dual))
629 if not solver_type in self._solver_type_dict:
630 if self.penalty.upper() == 'L1' and self.loss.upper() == 'L1':
AttributeError: 'LogisticMe' object has no attribute 'upper'