考虑矩阵
X = [ 1 2 0 1;
1 0 1 2;
1 2 3 4;
2 4 6 8;
.
.
1 2 0 1
.
. ]
我想创建一个新列,以便我可以在每一行中编号ith
。
X = [ 1 2 0 1; y = [1
1 0 1 2; 1
1 2 3 4; 1
2 4 6 8; 1
. .
. .
1 2 0 1 2
. .
. ] .]
有什么想法吗?
答案 0 :(得分:3)
这个怎么样?
y = sum(triu(squareform(pdist(X))==0)).';
这可以通过计算前一行等于每行的数量来实现。如果它们的距离(使用squareform
和pdist
计算)为0,则两行相等。triu
确保仅考虑先前的行。
为减少计算时间并避免依赖统计工具箱,您可以使用@ user1735003的建议:
y = sum(triu((bsxfun(@plus, sum(X.^2,2), sum(X.^2,2)') - 2*X*X.')==0));
答案 1 :(得分:2)
方法#1
%// unique rows
unqrows = unique(X,'rows');
%// matches for each row against the unique rows and their cumsum values
matches_perunqrow = squeeze(all(bsxfun(@eq,X,permute(unqrows,[3 2 1])),2));
cumsum_unqrows = cumsum(matches_perunqrow,1);
%// Go through a row-order and get the cumsum values for the final output
[row,col] = find(matches_perunqrow);
[sorted_row,ind] = sort(row);
y=cumsum_unqrows(sub2ind(size(cumsum_unqrows),[1:size(cumsum_unqrows,1)]',col(ind)));
示例运行 -
X =
1 2 0 1
1 0 1 2
1 2 3 4
2 4 6 8
1 2 0 1
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 0 1
out =
1
1
1
1
2
2
3
4
5
3
方法#2
%// unique rows
unqrows = unique(X,'rows');
%// matches for each row against the unique rows
matches_perunqrow = all(bsxfun(@eq,X,permute(unqrows,[3 2 1])),2)
%// Get the cumsum of matches and select only the matches for each row.
%// Since we need to go through a row-order, transpose the result
cumsum_perrow = squeeze(cumsum(matches_perunqrow,1).*matches_perunqrow)' %//'
%// Select the non zero values for the final output
y = cumsum_perrow(cumsum_perrow~=0)
方法#3
%// label each row based on their uniqueness
[~,~,v3] = unique(X,'rows')
matches_perunqrow = bsxfun(@eq,v3,1:size(X,1))
cumsum_unqrows = cumsum(matches_perunqrow,1);
%// Go through a row-order and get the cumsum values for the final output
[row,col] = find(matches_perunqrow);
[sorted_row,ind] = sort(row);
y=cumsum_unqrows(sub2ind(size(cumsum_unqrows),[1:size(cumsum_unqrows,1)]',col(ind)));
方法#4
%// label each row based on their uniqueness
[~,~,match_row_id] = unique(X,'rows');
%// matches for each row against the unique rows and their cumsum values
matches_perunqrow = bsxfun(@eq,match_row_id',[1:size(X,1)]');
cumsum_unqrows = cumsum(matches_perunqrow,2);
%// Select the cumsum values for the ouput based on the unique matches for each row
y = cumsum_unqrows(matches_perunqrow);
答案 2 :(得分:1)
包含for循环的解决方案可以很容易地完成,也许它已经足够快了。我相信有一个更快的解决方案,可能会使用cumsum
,但也许你根本不需要它。基本思路:首先找到唯一行的索引,以便能够处理标量索引而不是完整行(向量)。
然后遍历索引并找到先前出现的次数:
X = [ 1 2 0 1;
1 0 1 2;
1 2 3 4;
2 4 6 8;
1 2 0 1;
1 3 3 7;
1 2 0 1];
[~,~,idx] = unique(X, 'rows'); %// find unique rows
%// loop over indices and accumulate number of previous occurences
y = zeros(size(idx));
for i = 1:length(idx)
y(i) = sum(idx(1:i) == idx(i)); %// this line probably scales horrible with length of idx.
end
该示例的结果是:
y =
1
1
1
1
2
1
3