我有一张拼错单词的表格。我需要使用与那个更相似的词来纠正那些词,那个词的频率更高。
例如,在我运行
之后aggregate(CustomerID ~ Province, ventas2, length)
我得到了
1
2 AMBA 29
3 BAIRES 1
4 BENOS AIRES 1
12 BUENAS AIRES 1
17 BUENOS AIRES 4
18 buenos aires 7
19 Buenos Aires 3
20 BUENOS AIRES 11337
35 CORDOBA 2297
36 cordoba 1
38 CORDOBESA 1
39 CORRIENTES 424
所以我需要用BUENOS AIRES替换布宜诺斯艾利斯,布宜诺斯艾利斯,Baires,布宜诺斯艾利斯,但AMBA不应该被替换。 CORDOBESA和Cordoba也应该被CORDOBA取代,而不是CORRIENTES。
我怎样才能在R?
中这样做谢谢!
答案 0 :(得分:3)
这是一个可能的解决方案。
免责声明:
此代码似乎适用于您当前的示例。我不保证当前参数(例如切割高度,聚类聚集方法,距离方法等)对您的真实(完整)数据有效。
# recreating your data
data <-
read.csv(text=
'City,Occurr
AMBA,29
BAIRES,1
BENOS AIRES,1
BUENAS AIRES,1
BUENOS AIRES,4
buenos aires,7
Buenos Aires,3
BUENOS AIRES,11337
CORDOBA,2297
cordoba,1
CORDOBESA,1
CORRIENTES,424',stringsAsFactors=F)
# simple pre-processing to city strings:
# - removing spaces
# - turning strings to uppercase
cities <- gsub('\\s+','',toupper(data$City))
# string distance computation
# N.B. here you can play with single components of distance costs
d <- adist(cities, costs=list(insertions=1, deletions=1, substitutions=1))
# assign original cities names to distance matrix
rownames(d) <- data$City
# clustering cities
hc <- hclust(as.dist(d),method='single')
# plot the cluster dendrogram
plot(hc)
# add the cluster rectangles (just to see the clusters)
# N.B. I decided to cut at distance height < 5
# (read it as: "I consider equal 2 strings needing
# less than 5 modifications to pass from one to the other")
# Obviously you can use another value.
rect.hclust(hc,h=4.9)
# get the clusters ids
clusters <- cutree(hc,h=4.9)
# turn into data.frame
clusters <- data.frame(City=names(clusters),ClusterId=clusters)
# merge with frequencies
merged <- merge(data,clusters,all.x=T,by='City')
# add CityCorrected column to the merged data.frame
ret <- by(merged,
merged$ClusterId,
FUN=function(grp){
idx <- which.max(grp$Occur)
grp$CityCorrected <- grp[idx,'City']
return(grp)
})
fixed <- do.call(rbind,ret)
结果:
> fixed
City Occurr ClusterId CityCorrected
1 AMBA 29 1 AMBA
2.2 BAIRES 1 2 BUENOS AIRES
2.3 BENOS AIRES 1 2 BUENOS AIRES
2.4 BUENAS AIRES 1 2 BUENOS AIRES
2.5 BUENOS AIRES 4 2 BUENOS AIRES
2.6 buenos aires 7 2 BUENOS AIRES
2.7 Buenos Aires 3 2 BUENOS AIRES
2.8 BUENOS AIRES 11337 2 BUENOS AIRES
3.9 cordoba 1 3 CORDOBA
3.10 CORDOBA 2297 3 CORDOBA
3.11 CORDOBESA 1 3 CORDOBA
4 CORRIENTES 424 4 CORRIENTES
群集图:
答案 1 :(得分:0)
这是我对您的汇总结果的小型复制您需要更改所有对数据框的调用以适应您的数据结构。
df
#output
# word freq
#1 a 1
#2 b 2
#3 c 3
#find the max frequency
mostFrequent<-max(df[,2]) #doesn't handle ties
#find the word we will be replacing with
replaceString<-df[df[,2]==mostFrequent,1]
#[1] "c"
#find all the other words to be replaced
tobereplaced<-df[df[,2]!=mostFrequent,1]
#[1] "a" "b"
现在假设您拥有包含整个数据集的以下数据框,我只会用单词复制一个列。
totalData
# [,1]
#[1,] "a"
#[2,] "c"
#[3,] "b"
#[4,] "d"
#[5,] "f"
#[6,] "a"
#[7,] "d"
#[8,] "b"
#[9,] "c"
我们可以通过以下调用替换我们要替换的所有单词,以及我们要替换它们的字符串
totaldata[totaldata%in%tobereplaced]<-replaceString
# [,1]
#[1,] "c"
#[2,] "c"
#[3,] "c"
#[4,] "d"
#[5,] "f"
#[6,] "c"
#[7,] "d"
#[8,] "c"
#[9,] "c"
正如您所看到的,所有的&b和s已被替换为c,其他单词是相同的