收集物品并计算出现次数

时间:2014-06-27 16:58:58

标签: prolog failure-slice

我正在尝试编写一个递归规则collCount/2,它将列表中相同的项目与它们各自的出现次数分组为元组。

例如,collCount([a,b,a,b,c,b],F)F[(a,2),(b,3),(c,1)]绑定。运行此查询时,Prolog只返回no

以下是我迄今为止所做的工作:

collCount([H|T],[(H,N)|L2]) :-
    countDel(H,[H|T],L,N),
    collCount(L,L2).

countDel(X,T,Rest,N) :-
    occur(X,T,N),
    delAll(X,T,Rest).

occur(_,[],0).
occur(X,[X|T],N) :-
    occur(X,T,NN),
    N is NN + 1.
occur(X,[H|T],N) :-
    occur(X,T,N),
    X \= H.

delAll(_,[],[]).
delAll(X,[X|T],Ans) :-
    delAll(X,T,Ans).
delAll(X,[H|T],[H|Rest]) :-
    delAll(X,T,Rest),
    X \= H.

谓词countDel/4计算并删除列表中特定项目的所有匹配项。例如,countDel(2,[1,2,3,2,2],L,N)将L与[1,3]N3绑定。

谓词occur/3计算列表中特定项的所有出现次数。例如,occur(3,[1,2,3,4,3],Num)Num2绑定。

谓词delAll/3删除列表中特定项目的所有匹配项。例如,delAll(3,[1,2,3,4,3],L)L[1,2,4]绑定。

非常感谢任何帮助。

4 个答案:

答案 0 :(得分:3)

我想提请你注意你和@ CapelliC解决方案的一小部分内容。无害的:

occur(_,[],0) :- false.
occur(X,[X|T],N) :-
    occur(X,T,NN), false,
    N is NN + 1.
occur(X,[H|T],N) :-
    occur(X,T,N), false,
    X \= H.

所以我在这里做的是在你的程序中加入一些 false 目标。通过这种方式,这个程序现在将采取比没有更少的推论。不过,有一些值得注意的事情。考虑:

?- length(As,M), M>9, maplist(=(a),As), \+ time(occur(a,As,_)).
% 3,072 inferences, 0.002 CPU in 0.002 seconds (100% CPU, 1989931 Lips)
As = [a, a, a, a, a, a, a, a, a|...],
M = 10 ;
% 6,144 inferences, 0.003 CPU in 0.003 seconds (100% CPU, 2050613 Lips)
As = [a, a, a, a, a, a, a, a, a|...],
M = 11 ;
% 12,288 inferences, 0.006 CPU in 0.006 seconds (100% CPU, 2128433 Lips)
As = [a, a, a, a, a, a, a, a, a|...],
M = 12 

你看够了吗?添加另一个元素时,推理数量会翻倍。简而言之,指数开销!你需要首先考虑不平等的目标。更好的是,使用dif(X, H)

请注意,此属性与尾递归无关。仍然有一些优化的地方,但远不如这个。

有关使用此技术的更多示例,请参阅

答案 1 :(得分:3)

对于逻辑上纯粹的实现,请查看相关问题的my answer " How to count number of element occurrences in a list in Prolog"

在该答案中,我提出了一个list_counts/2的实现,它保留了

让我们使用list_counts/2

?- list_counts([a,b,a,b,c,b],F).
F = [a-2, b-3, c-1].

请注意,list_counts/2代表KV成对K-V。通常,由于多种原因(可读性,与其他标准库谓词的互操作性,效率),这比基于逗号(K,V)或列表[K,V]的表示更可取。

如果确实需要使用基于逗号的表示法,您可以按如下方式定义collCount/2

:- use_module(library(lambda)).

collCount(Xs,Fss) :-
    list_counts(Xs,Css),
    maplist(\ (K-V)^(K,V)^true,Css,Fss).

因此,让我们使用collCount/2

?- collCount([a,b,a,b,c,b],F).
F = [(a,2), (b,3), (c,1)].           % succeeds deterministically

编辑2015-05-13

出于好奇,让我们考虑his answer中@false所提到的表现方面。

以下查询大致对应于@false在其答案中使用的查询。在这两者中,我们都对所需的努力感兴趣 普遍终止:

?- length(As,M), 
   M>9, 
   maplist(=(a),As), 
   time((list_item_subtracted_count0_count(As,a,_,1,_),false ; true)).
% 73 inferences, 0.000 CPU in 0.000 seconds (95% CPU, 1528316 Lips)
As = [a, a, a, a, a, a, a, a, a|...],
M = 10 ;
% 80 inferences, 0.000 CPU in 0.000 seconds (96% CPU, 1261133 Lips)
As = [a, a, a, a, a, a, a, a, a|...],
M = 11 ;
% 87 inferences, 0.000 CPU in 0.000 seconds (96% CPU, 1315034 Lips)
As = [a, a, a, a, a, a, a, a, a|...],
M = 12 ...

答案 2 :(得分:0)

你的代码大多是正确的。我在修改过的地方放置了评论。

collCount([],[]).  % miss base case
collCount([H|T],[(H,N)|L2]) :-
    countDel(H,[H|T],L,N),
    collCount(L,L2).

countDel(X,T,Rest,N) :-
    occur(X,T,N),
    delAll(X,T,Rest).

occur(_,[],0).
occur(X,[X|T],N) :-
    occur(X,T,NN),
    N is NN + 1.
occur(X,[H|T],N) :-
    occur(X,T,N),
    X \= H.

delAll(_,[],[]).
delAll(X,[X|T],Ans) :-
    delAll(X,T,Ans).
delAll(X,[H|T],[H|Rest]) :-
    X \= H,  % moved before recursive call
    delAll(X,T,Rest).

这会产生

?- collCount([a,b,a,b,c,b],F).
F = [ (a, 2), (b, 3), (c, 1)] ;
false.

答案 3 :(得分:0)

一种方式:

frequencies_of( []     , []     ) .  % empty list? success!
frequencies_of( [X|Xs] , [F|Fs] ) :- % non-empty list?
  count( Xs , X:1 , F , X1 ) ,       % count the occurrences of the head, returning the source list with all X removed
  frequencies_of( X1 , Fs )          % continue
  .                                  %

count( [] , F , F , [] ) .           % empty list? success: we've got a final count.
count( [H|T] , X:N , F , Fs ) :-     % otherwise...
  H = X ,                            % - if the head is what we're counting, 
  N1 is N+1 ,                        % - increment the count
  count( T , X:N1 , F , Fs )         % - recurse down
  .                                  %
count( [H|T] , X:N , F , [H|Fs] ) :- % otherwise...
  H \= X ,                           % - if the head is NOT what we're counting
  count( T , X:N , F , Fs )          % - recurse down, placing the head in the remainder list
  .                                  %

另一种看待它的方式:

frequencies_of( Xs , Fs ) :-     % compile a frequency table
  frequencies_of( Xs , [] , Fs ) % by invoking a worker predicate with its accumulator seeded with the empty list
  .

frequencies_of( []     , Fs , Fs ) .  % the worker predicate ends when the source list is exhausted
frequencies_of( [X|Xs] , Ts , Fs ) :- % otherwise...
  count( X , Ts , T1 ) ,              % - count X in the accumulator
  frequencies_of( Xs , T1 , Fs )      % - and recursively continue
  .                                   %

count( X , []       , [X:1]     ) .   % if we get to the end, we have a new X: count it
count( X , [X:N|Ts] , [X:N1|Ts] ) :-  % otherwise, if we found X,
  N1 is N+1                           % - increment the count
  .                                   % - and end.
count( X , [T:N|Ts] , [T:N|Fs]  ) :-  % otherwise
  X \= T ,                            % - assuming we didn't find X
  increment( X , Ts , Fs )            % - just continue looking
  .                                   % Easy!

第三种方法是首先对列表进行排序,而不删除重复项。订购列表后,有序列表的简单1遍行程编码为您提供频率表,如下所示:

frequencies_of( Xs , Fs ) :- % to compute the frequencies of list elements
  msort( Xs , Ts ) ,         % - sort the list (without removing duplicates)
  rle( Ts , Fs )             % - then run-length encode the sorted list
  .                          % Easy!

rle( []    , [] ) .    % the run length encoding of an empty list is the empty list.
rle( [H|T] , Rs ) :-   % the run length encoding is of a non-empty list is found by
  rle( T , H:1 , Rs )  % invoking the worker on the tail with the accumulator seeded with the head
  .                    %

rle( []    , X:N , [X:N] ) .     % the end of the source list ends the current run (and the encoding).
rle( [H|T] , X:N , Rs    ) :-    % otherwise...
  H = X     ,                    % - if we have a continuation of the run,
  N1 is N+1 ,                    % - increment the count
  rle( T , X:N1 , Rs )           % - and recursively continue
  .                              %
rle( [H|T] , X:N , [X:N|Rs] ) :- % otherwise...
  H \= X ,                       % - if the run is at an end,
  rle( T , H:1 , Rs)             % - recursively continue, starting a new run and placing the current encoding in the result list.
  .                              %