TfidfVectorizer dtype不匹配

时间:2014-04-01 02:58:56

标签: python scikit-learn

我试图在语料库上使用TfidfVectorizer,但每次我都会遇到此错误

File "sparsefuncs.pyx", line 117, in sklearn.utils.sparsefuncs.inplace_csr_row_normalize_l2 (sklearn\utils\sparsefuncs.c:2328)
ValueError: Buffer dtype mismatch, expected 'int' but got 'long long'

这是我的代码

corpus = []
testCorpus = []
trainType = []
testType = []

with open("stone_sku.csv") as f:
    cr = csv.DictReader(f)
    for row in cr:
        corpus.append(row['sku'])
        trainType.append(row['sku'])

with open("stone_sku.csv") as f:
    crTest = csv.DictReader(f)
    for row in crTest:
        testCorpus.append(row['sku'])
        testType.append(row['sku'])

cv = TfidfVectorizer(min_df=1, analyzer='char', ngram_range=(2,3))

trainCounts = cv.fit_transform(corpus)

它适用于CountVectorizer,如果我尝试使用TfidfTransformer转换数据,则会出现同样的错误

1 个答案:

答案 0 :(得分:2)

你在运行64位Windows吗?这可能是由最近在主分支中修复的已知问题引起的。