我有来自不同行业的不同公司的日常时间序列,并与PostgreSQL合作。我从一个例子开始解释我的问题。我有这个:
+------------+---------+-------------+----+
| day | company | industry | v |
+------------+---------+-------------+----+
| 2012-01-12 | A | consumer | 2 |
| 2012-01-12 | B | consumer | 2 |
| 2012-01-12 | C | health | 4 |
| 2012-01-12 | D | health | 4 |
| 2012-01-13 | A | consumer | 5 |
| 2012-01-13 | B | consumer | 5 |
| 2012-01-13 | C | health | 7 |
| 2012-01-13 | D | health | 7 |
| 2012-01-16 | A | consumer | 8 |
| 2012-01-16 | B | consumer | 8 |
| 2012-01-16 | C | health | 3 |
| 2012-01-16 | D | health | 3 |
+------------+---------+-------------+----+
来自不同行业的不同公司有一些价值v作为各行业的日平均值。 我需要的是:
+------------+---------+----------+---+------------+
| day | company | industry | v | delta_v |
+------------+---------+----------+---+------------+
| 2012-01-12 | A | consumer | 2 | NULL |
| 2012-01-12 | B | consumer | 2 | NULL |
| 2012-01-12 | C | health | 4 | NULL |
| 2012-01-12 | D | health | 4 | NULL |
| 2012-01-13 | A | consumer | 5 | 1.5 |
| 2012-01-13 | B | consumer | 5 | 1.5 |
| 2012-01-13 | C | health | 7 | 0.75 |
| 2012-01-13 | D | health | 7 | 0.75 |
| 2012-01-16 | A | consumer | 8 | 0.6 |
| 2012-01-16 | B | consumer | 8 | 0.6 |
| 2012-01-16 | C | health | 3 | -0.571428 |
| 2012-01-16 | D | health | 3 | -0.571428 |
+------------+---------+----------+---+------------+
我需要变量v的每日变化。例如,2012-01-12行业“消费者”的v的平均值为2,而2012-01-13的平均值为5.因此增长为(5- 2)/ 2 = 1.5。
我试过了:
SELECT *
, (v - LAG(v) OVER (PARTITION BY industry ORDER BY day) )
/ LAG (v) OVER (PARTITION BY industry ORDER BY day) AS delta_v
FROM mytable
ORDER BY day, industry
问题是,如果同一行业中有一家以上的公司在一天内计算了价值变化v也是“日内”。
我希望它只需要在“PARTITION BY”条款中进行一次小修正,但我真的无法弄清楚如何去做。你有什么想法可以帮助我吗?
答案 0 :(得分:2)
我想你也希望公司在那里:
SELECT t.*,
((v - LAG(v) OVER (PARTITION BY industry, company ORDER BY day) )
/ LAG (v) OVER (PARTITION BY industry, company ORDER BY day)
) AS delta_v
FROM mytable t
ORDER BY day, industry;
我不确定Postgres是否实际计算lag()
两次,但这更容易维护:
SELECT t.*,
(v / LAG(v) OVER (PARTITION BY industry, company ORDER BY day) ) - 1
) AS delta_v
FROM mytable t
ORDER BY day, industry;