OpenCV颜色检测为黄色

时间:2014-02-16 10:13:48

标签: java android opencv image-processing colors

这是来自OpenCV ColorBlobDetectionActivity.java示例的程序,我尝试修改它以便在触摸屏幕时检测黄色对象,但它总是只检测黑色对象,即使我指定颜色标量为黄色。我已将“通知”的评论放在我认为相关的地方。

 package com.example.road_guiding;

import java.util.List;

import org.opencv.android.BaseLoaderCallback;
import org.opencv.android.CameraBridgeViewBase;
import org.opencv.android.OpenCVLoader;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.imgproc.Imgproc;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.MotionEvent;
import android.view.View;



public class ColorBlobDetectionActivity extends Activity implements View.OnTouchListener, CameraBridgeViewBase.CvCameraViewListener2 {
//  private static final String TAG = "OCVSample::Activity";
    private Scalar CONTOUR_COLOR;
    private Scalar mBlobColorHsv;
    private Scalar mBlobColorRgba;

    //NOTICE
    private Scalar temp;    

    private ColorBlobDetector mDetector;
    private boolean mIsColorSelected = false;
    private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
        public void onManagerConnected(int paramAnonymousInt) {
            switch (paramAnonymousInt) {
            default:
                super.onManagerConnected(paramAnonymousInt);
//              Log.i("OCVSample::Activity", "OpenCV loaded successfully");
                ColorBlobDetectionActivity.this.mOpenCvCameraView.enableView();
                ColorBlobDetectionActivity.this.mOpenCvCameraView.setOnTouchListener(ColorBlobDetectionActivity.this);

                return;
            }

        }
    };
    private CameraBridgeViewBase mOpenCvCameraView;
    private Mat mRgba;
//  private Size SPECTRUM_SIZE;
//  private Mat mSpectrum;

    public ColorBlobDetectionActivity() {
        Log.i("OCVSample::Activity", "Instantiated new " + getClass());
    }

    private Scalar converScalarHsv2Rgba(Scalar paramScalar) {
        Mat localMat = new Mat();
        Imgproc.cvtColor(new Mat(1, 1, CvType.CV_8UC3, paramScalar), localMat, 71, 4);
        return new Scalar(localMat.get(0, 0));
    }

    public Mat onCameraFrame( CameraBridgeViewBase.CvCameraViewFrame paramCvCameraViewFrame) {
        this.mRgba = paramCvCameraViewFrame.rgba(); // mRbga = input frame with color

        if (this.mIsColorSelected) {
            this.mDetector.process(this.mRgba);

            //contour info is ready in detector
            List colorContour = this.mDetector.getContours();
//          Log.e("OCVSample::Activity", "Contours count: " + localList.size());
            Imgproc.drawContours(this.mRgba, colorContour, -1, this.CONTOUR_COLOR); //draw contour around detected area     

            this.mRgba.submat(4, 68, 4, 68).setTo(this.mBlobColorRgba);

//          Producing spectrum
//          Mat localMat = this.mRgba.submat(4, 4 + this.mSpectrum.rows(), 70, 70 + this.mSpectrum.cols());
//          this.mSpectrum.copyTo(localMat);
        }
        return this.mRgba;
    }

    public void onCameraViewStarted(int paramInt1, int paramInt2) {
        this.mRgba = new Mat(paramInt2, paramInt1, CvType.CV_8UC4); //width - - the width of the frames that will be delivered
        this.mDetector = new ColorBlobDetector();
        this.mBlobColorRgba = new Scalar(255.0);
        this.mBlobColorHsv = new Scalar(255.0);
        this.CONTOUR_COLOR = new Scalar(255.0, 0.0, 0.0, 255.0); //Specfiy the color of contour

        //NOTICE
        this.temp = new Scalar (237.0, 169.0, 50.0, 255.0); 

        //yellow to be used:
//      this.mBlobColorRgba.val[0] = 237;
//      this.mBlobColorRgba.val[1] = 169;   
//      this.mBlobColorRgba.val[2] = 50;
//      this.mBlobColorRgba.val[3] = 255;   


//      this.mSpectrum = new Mat();
//      this.SPECTRUM_SIZE = new Size(200.0, 64.0);
    }

    public void onCreate(Bundle paramBundle) {
//      Log.i("OCVSample::Activity", "called onCreate");
        super.onCreate(paramBundle);
//      requestWindowFeature(1); // do not show app title
//      getWindow().addFlags(128);
        setContentView(R.layout.activity_color_blob_detection);
        this.mOpenCvCameraView = ((CameraBridgeViewBase) findViewById(R.id.HelloOpenCvView));
        this.mOpenCvCameraView.setCvCameraViewListener(this);
    }

    public boolean onTouch(View paramView, MotionEvent paramMotionEvent)
      {
        int cameraViewWidth = this.mRgba.cols(); //  cameraViewWidth = i
        int cameraViewHeight = this.mRgba.rows(); // cameraViewHeight = j
        int xOffset = (this.mOpenCvCameraView.getWidth() - cameraViewWidth) / 2;
        int yOffset = (this.mOpenCvCameraView.getHeight() - cameraViewHeight) / 2;
        int touchX = (int)paramMotionEvent.getX() - xOffset;
        int touchY = (int)paramMotionEvent.getY() - yOffset;

        //      Log.i("OCVSample::Activity", "Touch image coordinates: (" + n = touchX + ", " + i1=touchY + ")");
        if ((touchX < 0) || (touchY < 0) || (touchX > cameraViewWidth) || (touchY > cameraViewHeight)) {
          return false;
        }

        Rect touchedRect = new Rect();
        if (touchX > 4) {
          touchedRect.x = touchX - 4;
          touchedRect.y = touchY - 4;
          touchedRect.width = touchX + 4 - touchedRect.x;
        }

        for (int i5 = touchY + 4 - touchedRect.y;; i5 = cameraViewHeight - touchedRect.y) {
            touchedRect.height = i5;

//          Mat touchedRegionRgba = this.mRgba.submat(touchedRect);
            Mat touchedRegionRgba = new Mat();

            //NOTICE
            Imgproc.cvtColor(new Mat(1, 1, CvType.CV_8UC3, temp), touchedRegionRgba, 71, 0);

            Mat touchedRegionHsv = new Mat();

            Imgproc.cvtColor(touchedRegionRgba, touchedRegionHsv, Imgproc.COLOR_RGB2HSV_FULL); //67
            this.mBlobColorHsv = Core.sumElems(touchedRegionHsv); //calculate average color of touched region
            int pixelCount = touchedRect.width * touchedRect.height;
            for (int i = 0; i < this.mBlobColorHsv.val.length; i++) {
                double[] arrayOfDouble = this.mBlobColorHsv.val;
                arrayOfDouble[i] /= pixelCount;
          }
            touchedRegionRgba.release();
            touchedRegionHsv.release();

        break;
        }

        this.mBlobColorRgba = converScalarHsv2Rgba(this.mBlobColorHsv);

//      Log.i("OCVSample::Activity", "Touched rgba color: (" + this.mBlobColorRgba.val[0] + ", " + this.mBlobColorRgba.val[1] + ", " + this.mBlobColorRgba.val[2] + ", " + this.mBlobColorRgba.val[3] + ")");

        this.mDetector.setHsvColor(this.mBlobColorHsv);

//      Imgproc.resize(this.mDetector.getSpectrum(), this.mSpectrum, this.SPECTRUM_SIZE);
        this.mIsColorSelected = true;
        return false;
      }

    public void onDestroy() {
        super.onDestroy();
        if (this.mOpenCvCameraView != null) {
            this.mOpenCvCameraView.disableView();
        }
    }

    public void onPause() {
        super.onPause();
        if (this.mOpenCvCameraView != null) {
            this.mOpenCvCameraView.disableView();
        }
    }

    public void onResume() {
        super.onResume();
        OpenCVLoader.initAsync("2.4.3", this, this.mLoaderCallback);
    }

    public void onCameraViewStopped() {
        this.mRgba.release();
    }
}

任何帮助将不胜感激,谢谢!

1 个答案:

答案 0 :(得分:1)

抱歉,我不知道Java,但我可以建议检测“黄色”颜色的一般逻辑。您应该将RGB图片转换为YUV图片,然后均衡Y-channel 。由于Y通道用于亮度,因此您可以通过这样做来减少照明变化的影响。

- 然后将图片从RGB转换回YUV - 现在将图像转换为HSV。 - 现在尝试仅计算那些可能代表“黄色”颜色的像素。为此,请使用以下条件:

  1. 像素应该S>0(或接近0的其他值)以消除在计算中产生问题的白色像素。
  2. 像素应具有V>0以移除具有V = 0
  3. 的“黑色像素”
  4. 如果H> 22 && H<37然后将yellowPixelCount增加1。
  5. - 因此,按照上述步骤,您可以计算图像中的“黄色”像素。并且,如果计数大于阈值,那么您可以预测它是“黄色”颜色。

    PS:不要忘记计算满足标准1&amp;的像素总数。 2以便您可以使用该值来查找黄色分量的百分比,以预测图像是否为黄色。

    if (condition 1 & 2 satisfied)
    {
        totalPixelCount++;
        if(condition 3 satisfied)
        {
            yellowPixelCount
        }
    }
    
    % of yellow componet = yellowPixelCount/totalPixelCount*100