我有一张他们相关的基因和疾病表。我想构建一个系统发育树并将基因分组到他们的疾病中。下面是一个样本数据集,其中gene1列属于疾病1,基因2属于疾病2。主要基因1和基因2彼此相关,并映射到它们所属的疾病。
gene1 gene2 disease1 disease2
AGTR1 ACHE cancer tumor
AGTR1 ACHE parkinson's asthma
ALOX5 ADRB1 myocardial infarct heart failure
AR ADORA1 breast cancer anxiety disorder
我希望有一个循环的系统发育树用于我的目的,在下面的链接中给出: http://itol.embl.de/itol.cgi
有任何建议在R或任何软件中执行此操作吗?
由于
我现在正在运行的代码:
d=read.csv("genes_disease.txt",sep="\t",header=TRUE)
phyl_gad <-as.phylo(hclust(dist(d)))
plot(phyl_gad,type="fan",edge.col=c("red","green","blue","orange","yellow","pink","magenta","white"),show.tip.label=FALSE)
如果我执行show.tip.label = TRUE,则会有太多标签被绘制并使提示混乱。
我修改后的数据集现在只有两列,一列用于基因,一列用于疾病。
答案 0 :(得分:4)
ape
包。假设您有hclust
个对象。例如,
library(ape)
fit<-hclust(d,method='ward')
plot(as.phylo(fit),type='fan',label.offset=0.1,no.margin=TRUE)
如果要修改树末端的颜色,可以使用cutree
和tip.color
参数。这将为不同的簇创建一组重复的颜色(例如,color=c('red','blue')
将为分支的末尾添加交替的蓝色和红色文本。
nclus=...#insert number of clusters you want to cut to
color=...#insert a vector of colors here
fit<-hclust(d,method='ward')
color_list=rep(color,nclus/length(color))
clus=cutree(fit,nclus)
plot(as.phylo(fit),type='fan',tip.color=color_list[clus],label.offset=0.1,no.margin=TRUE)
我不确定你想使用什么类型的聚类方法(我使用的是Ward的方法),但这就是你的方法。
答案 1 :(得分:0)
我认为你想做的不是系统发育,而是远距离聚类。这是一个可重复的例子。
library(XML)
library(RCurl)#geturl
library(rlist)
library(plyr)
library(reshape2)
library(ggtree)
#get the genes/ diseases info from internet
#example from http://www.musclegenetable.fr/
urllist<-paste0("http://195.83.227.65/4DACTION/GS/",LETTERS[1:24] )
theurl <- lapply(urllist, function(x) RCurl::getURL(x,.opts = list(ssl.verifypeer = T) ) )# wait
theurl2<-lapply(theurl, function(x) gsub("<span class='Style18'>","__",x))
tables <- lapply(theurl2, function (x) XML::readHTMLTable(x) )
tables2 <- lapply(tables, function(x) rlist::list.clean(x, fun = is.null, recursive = FALSE) )
unlist1 = lapply(tables2, plyr::ldply)
newdf<-do.call(rbind, unlist1)
colnames(newdf)[4]<-"diseases"
colnames(newdf)[2]<-"Gene"
newdf$gene<-sub("([A-z0-9]+)(__)(.*)","\\1",newdf$Gene)
newdf$diseases<-sub("(\\* )","",newdf$diseases, perl=T)
#split info of several diseases per gene, and simplify text
#to allow better clustering
newdf2<-as.data.frame(data.table::setDT(newdf)[, strsplit(as.character(diseases), "* ", fixed=TRUE), by = .(gene, diseases)
][,.(diseases = V1, gene)])
newdf2$disease<-sub("([A-z0-9,\\-\\(\\)\\/ ]+)( \\- )(.*)","\\1",newdf2$diseases)
newdf2$disease<-gsub("[0-9,]","",newdf2$disease)
newdf2$disease<-gsub("( [A-Z]{1,2})$","",newdf2$disease)
newdf2$disease<-gsub("(\\-)","",newdf2$disease)
newdf2$disease<-gsub("\\s*\\([^\\)]+\\)","",newdf2$disease)
newdf2$disease<-gsub("\\s*type.*","",newdf2$disease, ignore.case = T)
newdf2$disease<-gsub("(X{0,3})(IX|IV|V?I{0,3})","", newdf2$disease)
newdf2$disease<-gsub("( [A-z]{1,2})$","",newdf2$disease)
newdf2$disease<-sub("^([a-z])(.*)","\\U\\1\\E\\2",newdf2$disease, perl=T)
newdf2$disease<-trimws(newdf2$disease)
newdf2<-newdf2[,c(2,3)]
#make clustering and tree
newcasted <- reshape2::dcast(newdf2, gene ~ disease)
phyl_gad <-ape::as.phylo(hclust(dist(newcasted)))
#use names of genes and diseases in tree
DT <- data.table::as.data.table(newdf2)
newdf4<-as.data.frame(DT[, lapply(.SD, paste, collapse=","), by = gene, .SDcols = 2])
newdf4$genemerge<-paste(newdf4$gene, newdf4$disease)
phyl_gad$tip.label<-newdf4$genemerge
#plot tree
ggtree::ggtree(phyl_gad, layout = "circular")+ ggtree::geom_tiplab2(offset=0.1, align = F, size=4)