假设我有一个N = {1,2,3}的集合,那么我们可以列出它的所有7个非空子集。
n=3 # number of elements in a set
a=2^n-1 # number of non-empty subsets for that set
subsets=lapply(1:n, function(x) combn(n, x)) # list all the non-empty subest
subsets
现在我想将这些子集放入矩阵中并组织如下:
if n=3 or in an index matrix:
1 0 0 1 0 0
0 2 0 0 1 0
0 0 3 0 0 1
1 2 0 1 1 0
1 0 3 1 0 1
0 2 3 0 1 1
1 2 3 1 1 1
任何人都知道如何编写可以轻松扩展到任何n(= 4,5,6 ...)的代码?我试过这个:
subindex=matrix(c(0), nrow=a, ncol=n)
i=1
while(i<=a){
j=n
b=2^(n-1)
N=i
while(N>0){
if(b<=N) {subindex[i,j]=1}&{N=N-b}
b=trunc(b/2)
j=j-1
}
i=i+1
}
subindex
但是我得到的索引矩阵在第3行和第4行中是错误的。如果n = 4,那么还有更多错误......任何人都能纠正这个或简化这段代码吗?或者只是写一个全新的代码。真的很感激。
答案 0 :(得分:3)
n <- 4
lapply(seq_len(n), function(i)t(combn(n, i, FUN = tabulate, nbins = n)))
# [[1]]
# [,1] [,2] [,3] [,4]
# [1,] 1 0 0 0
# [2,] 0 1 0 0
# [3,] 0 0 1 0
# [4,] 0 0 0 1
#
# [[2]]
# [,1] [,2] [,3] [,4]
# [1,] 1 1 0 0
# [2,] 1 0 1 0
# [3,] 1 0 0 1
# [4,] 0 1 1 0
# [5,] 0 1 0 1
# [6,] 0 0 1 1
#
# [[3]]
# [,1] [,2] [,3] [,4]
# [1,] 1 1 1 0
# [2,] 1 1 0 1
# [3,] 1 0 1 1
# [4,] 0 1 1 1
#
# [[4]]
# [,1] [,2] [,3] [,4]
# [1,] 1 1 1 1