我在C中制作了这个程序,用于测试数字是否为素数。我还不熟悉算法的复杂性和所有Big O的东西,所以我不确定我的方法,即迭代和递归的组合,实际上是否比使用纯迭代方法。
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
typedef struct primenode{
long int key;
struct primenode * next;
}primenode;
typedef struct{
primenode * head;
primenode * tail;
primenode * curr;
unsigned long int size;
}primelist;
int isPrime(long int number, primelist * list ,long int * calls, long int * searchcalls);
primenode * primelist_insert(long int prime, primelist * list);
int primelist_search(long int searchval, primenode * searchat, long int * calls);
void primelist_destroy(primenode * destroyat);
int main(){
long int n;
long int callstoisprime = 0;
long int callstosearch = 0;
int result = 0;
primelist primes;
//Initialize primelist
primes.head = NULL;
primes.tail = NULL;
primes.size = 0;
//Insert 2 as a default prime (optional step)
primelist_insert(2, &primes);
printf("\n\nPlease enter a number: ");
scanf("%d",&n);
printf("Please wait while I crunch the numbers...");
result = isPrime(n, &primes, &callstoisprime, &callstosearch);
switch(result){
case 1: printf("\n%ld is a prime.",n); break;
case -1: printf("\n%ld is a special case. It's neither prime nor composite.",n); break;
default: printf("\n%ld is composite.",n); break;
}
printf("\n\n%d calls made to function: isPrime()",callstoisprime);
printf("\n%d calls made to function: primelist_search()",callstosearch);
//Print all prime numbers in the linked list
printf("\n\nHere are all the prime numbers in the linked list:\n\n");
primes.curr = primes.head;
while(primes.curr != NULL){
printf("%ld ", primes.curr->key);
primes.curr = primes.curr->next;
}
printf("\n\nNote: Only primes up to the square root of your number are listed.\n"
"If your number is negative, only the smallest prime will be listed.\n"
"If your number is a prime, it will itself be listed.\n\n");
//Free up linked list before exiting
primelist_destroy(primes.head);
return 0;
}
int isPrime(long int number, primelist * list ,long int * calls, long int *searchcalls){
//Returns 1 if prime
// 0 if composite
// -1 if special case
*calls += 1;
long int i = 2;
if(number==0||number==1){
return -1;
}
if(number<0){
return 0;
}
//Search for it in the linked list of previously found primes
if(primelist_search(number, list->head, searchcalls) == 1){
return 1;
}
//Go through all possible prime factors up to its square root
for(i = 2; i <= sqrt(number); i++){
if(isPrime(i, list,calls,searchcalls)){
if(number%i==0) return 0; //It's not a prime
}
}
primelist_insert(number, list); /*Insert into linked list so it doesn't have to keep checking
if this number is prime every time*/
return 1;
}
primenode * primelist_insert(long int prime, primelist * list){
list->curr = malloc(sizeof(primenode));
list->curr->next = NULL;
if(list->head == NULL){
list->head = list->curr;
}
else{
list->tail->next = list->curr;
}
list->tail = list->curr;
list->curr->key = prime;
list->size += 1;
return list->curr;
}
int primelist_search(long int searchval, primenode * searchat, long int * calls){
*calls += 1;
if(searchat == NULL) return 0;
if(searchat->key == searchval) return 1;
return primelist_search(searchval, searchat->next, calls);
}
void primelist_destroy(primenode * destroyat){
if(destroyat == NULL) return;
primelist_destroy(destroyat->next);
free(destroyat);
return;
}
基本上,我所看到的很多简单的primalty测试都是: 0.2是素数。 1.循环遍历从2到一半的所有整数或被测数字的平方根。 2.如果数字可被任何部分整除,则中断并返回false;这是复合材料。 3.否则,在最后一次迭代后返回true;这是最好的。
我认为您不必测试从2到平方根的每个数字,只需测试每个 prime 数字,因为所有其他数字都是素数的倍数。因此,在使用模数之前,函数调用自身以查明数字是否为素数。这有效,但我认为一遍又一遍地测试所有这些素数有点乏味。 因此,我使用链接列表来存储其中的每个素数,因此在测试primalty之前,程序首先搜索列表。
真的更快,更有效率,还是我浪费了很多时间?我在我的计算机上测试了它,而对于较大的素数,它确实看起来更快,但我不确定。我也不知道它是否使用了更多的内存,因为无论我做什么,任务管理器都会保持0.7 MB不变。
感谢您的回答!
答案 0 :(得分:4)
由于您的程序只测试一个数字,因此您在浪费时间尝试避免使用复合材料进行测试。您执行了大量计算以保存一个微小的模运算。
如果你连续测试多个数字以获得素数,那么预先计算素数到该范围上限的sqrt是有意义的,并在测试候选时通过这些素数
最好还是执行偏移 sieve of Eratosthenes(C code here),以找到给定范围内的素数。 Eratosthenes筛子从2到N找到素数的时间复杂度为O(N log log N)
;并且试验除以素数,O(N^1.5 / (log N)^2)
(更差;例如the ratio of run times筛分高达1mln,而100k为10.7x,而试验师为22x; 2mln对1ml是筛选2.04倍,试验分割2.7倍。
Eratosthenes偏移筛的伪代码:
Input: two Integers n >= m > 1
Let k = Floor(Sqrt(n)),
Let A be an array of Boolean values, indexed by Integers 2 to k, and
B an array of Booleans indexed by Integers from m to n,
initially all set to True.
for i = 2, 3, 4, ..., not exceeding k:
if A[i] is True:
for j = i^2, i^2+i, i^2+2i, ..., not greater than k:
A[j] := False
for j = i^2, i^2+i, i^2+2i, ..., between m and n, inclusive:
B[j] := False
Output: all `i`s such that B[i] is True, are all the primes
between m and n, inclusive.
常见的优化是仅使用赔率,i = 3,5,7,...
,从一开始就避免任何偶数(无论如何已知2是素数,任何偶数都是复合数)。然后2i
的步骤,而不仅仅是i
,可以在两个内循环中使用。因此,偶数索引被完全排除在处理之外(通常采用压缩寻址方案,val = start + 2*i
)。
答案 1 :(得分:0)
以下代码段可以大大提升:
//Go through all possible prime factors up to its square root
for(i = 2; i <= sqrt(number); i++){
if(isPrime(i, list,calls,searchcalls)){
if(number%i==0) return 0; //It's not a prime
}
}
不要循环遍历所有数字,只需循环浏览链接列表中的数字:
// Go through all possible prime factors up to its square root
primenode *p;
for (p = primes.head; p->key <= sqrt(number); p = p->next) {
if (number%(p->key) == 0) return 0; //It's not a prime
}
}