cuModuleLoad期间的CUDA_ERROR_INVALID_IMAGE

时间:2013-09-17 08:33:20

标签: cuda

我创建了一个非常简单的内核(可以找到here),我使用

成功编译了
"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.5\bin\nvcc.exe" --cl-version 2012 -ccbin "C:\Program Files (x86)\Microsoft Visual Studio 11.0\VC\bin" -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.5\include" -cudart static -cubin temp.cu

然后使用以下代码在

中加载内核
CUresult err = cuInit(0);
CUdevice device;
err = cuDeviceGet(&device, 0);
CUcontext ctx;
err = cuCtxCreate(&ctx, 0, device);

CUmodule module;
string path = string(dir) + "\\temp.cubin";
err = cuModuleLoad(&module, path.c_str());

cuCtxDetach(ctx);

很遗憾,在cuModuleLoad期间,我得到了CUDA_ERROR_INVALID_IMAGE的结果。有人能告诉我为什么会这样吗?内核的有效性和编译没有问题。

2 个答案:

答案 0 :(得分:3)

CUDA_ERROR_INVALID_IMAGE错误只应在模块文件无效时由cuModuleLoad返回。如果它丢失或包含架构不匹配,您可能会看到CUDA_ERROR_FILE_NOT_FOUNDCUDA_ERROR_INVALID_SOURCE错误。您还没有给我们足够的详细信息或代码来说明发生了什么,但至少在原则上,您所拥有的API代码应该可以使用。

要说明这应该如何工作,请考虑使用CUDA 5.5的Linux上的以下工作示例:

首先是你的内核:

#include <cmath>
using namespace std;

__device__ __inline__ float trim(unsigned char value)
{
    return fminf((unsigned char)255, fmaxf(value, (unsigned char)0));
}

__constant__ char z = 1;

__global__ void kernel(unsigned char* img, const float* a)
{
    int ix = blockIdx.x;
    int iy = threadIdx.x;
    int tid = iy*blockDim.x + ix;

    float x = (float)ix / blockDim.x;
    float y = (float)iy / gridDim.x;

    //placeholder

    img[tid*4+0] = trim((a[0]*z*z+a[1]*z+a[2]) * 255.0f);
    img[tid*4+1] = trim((a[3]*z*z+a[4]*z+a[5]) * 255.0f);
    img[tid*4+2] = trim((a[6]*z*z+a[7]*z+a[8]) * 255.0f);
    img[tid*4+3] = 255;
}

然后是一个简单的程序,用于在运行时将cubin加载到上下文中:

#include <cuda.h>
#include <string>
#include <iostream>

#define Errchk(ans) { DrvAssert((ans), __FILE__, __LINE__); }
inline void DrvAssert( CUresult code, const char *file, int line)
{
    if (code != CUDA_SUCCESS) {
        std::cout << "Error: " << code << " " <<  file << "@" << line << std::endl;
        exit(code);
    } else {
        std::cout << "Success: " << file << "@" << line << std::endl;
    }
}

int main(void)
{
    Errchk( cuInit(0) );
    CUdevice device;
    Errchk( cuDeviceGet(&device, 0) );
    CUcontext ctx;
    Errchk( cuCtxCreate(&ctx, 0, device) );

    CUmodule module;
    std::string path = "qkernel.cubin";
    Errchk( cuModuleLoad(&module, path.c_str()) );

    cuCtxDetach(ctx);
    return 0;
}

为主机中存在的设备架构构建cubin(在本例中为GTX670):

$ nvcc -arch=sm_30 -Xptxas="-v" --cubin qkernel.cu 
ptxas info    : 11 bytes gmem, 1 bytes cmem[3]
ptxas info    : Compiling entry function '_Z6kernelPhPKf' for 'sm_30'
ptxas info    : Function properties for _Z6kernelPhPKf
    0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info    : Used 10 registers, 336 bytes cmem[0]

和主持人计划:

$ nvcc -o qexe qmain.cc -lcuda

然后运行:

$ ./qexe 
Success: qmain.cc@18
Success: qmain.cc@20
Success: qmain.cc@22
Success: qmain.cc@26

加载模块代码。如果我删除cubin并再次运行,我会看到:

$ rm qkernel.cubin 
$ ./qexe 
Success: qmain.cc@18
Success: qmain.cc@20
Success: qmain.cc@22
Error: 301 qmain.cc@26

如果我为不兼容的架构编译,我会看到:

$ nvcc -arch=sm_10 -Xptxas="-v" --cubin qkernel.cu 
ptxas info    : 0 bytes gmem, 1 bytes cmem[0]
ptxas info    : Compiling entry function '_Z6kernelPhPKf' for 'sm_10'
ptxas info    : Used 5 registers, 32 bytes smem, 4 bytes cmem[1]
$ ./qexe 
Success: qmain.cc@18
Success: qmain.cc@20
Success: qmain.cc@22
Error: 300 qmain.cc@26

如果我编译成目标文件而不是cubin,我会看到:

$ nvcc -arch=sm_30 -Xptxas="-v" -c -o qkernel.cubin qkernel.cu 
ptxas info    : 11 bytes gmem, 1 bytes cmem[3]
ptxas info    : Compiling entry function '_Z6kernelPhPKf' for 'sm_30'
ptxas info    : Function properties for _Z6kernelPhPKf
    0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info    : Used 10 registers, 336 bytes cmem[0]
$ ./qexe 
Success: qmain.cc@18
Success: qmain.cc@20
Success: qmain.cc@22
Error: 200 qmain.cc@26

这是我可以让代码发出CUDA_ERROR_INVALID_IMAGE错误的唯一方法。我可以建议的是尝试我的代码和配方,看看你是否可以让它工作。

答案 1 :(得分:2)

如果为不同的机器类型编译,则会发生 - 例如32 vs 64。

如果您有32位应用程序,请将-machine 32添加到nvcc param中,它会没问题。