首先,如果这是一个基本问题我道歉,但是我在这里搜索并且无法找到我正在尝试的答案。我不是编程新手,但我是R的新手(我的编程有点生疏,因为我改变了职业生涯的重点)。
我想做的是一个相当简单的(着名的遗言):
这就是我试图做概念验证的方法,以及作为开发我自己的指标的跳板的用途。我感谢任何和所有有用的评论,链接等。在此先感谢所有!
答案 0 :(得分:4)
library(quantmod)
# a vector of stock tickers to look at
s <- c("AA", "AXP", "BA", "BAC", "CAT", "CSCO", "CVX", "DD", "DIS",
"GE", "HD", "HPQ", "IBM", "INTC", "JNJ", "JPM", "KO", "MCD",
"MMM", "MRK", "MSFT", "PFE", "PG", "T", "TRV", "UNH", "UTX",
"VZ", "WMT", "XOM")
e <- new.env() # an environment to hold our data
getSymbols(s, from=Sys.Date()-50, src="yahoo", env=e) # download stock prices
# create a parameter
pct <- 0.01 # look for close prices that are lower than 1% above lower bband.
# eapply loops over every object in the environment and applies a function to it.
# our function calculates the value of the lower BBand increased by "pct"
# Then it returns TRUE or FALSE depending on whether the stock price is below that.
# eapply returns a list, which we can `unlist` into a named vector
near.low.band <- unlist(eapply(e, function(x) {
bband.dn <- as.numeric(last(BBands(HLC(x))$dn))
as.numeric(last(Cl(x))) < bband.dn * (1 + pct)
}))
# get the names where the value is TRUE
names(near.low.band)[near.low.band]
# [1] "XOM" "JNJ" "JPM" "VZ" "UTX" "INTC" "MMM" "MCD" "CSCO" "PFE"
#[11] "GE" "T" "BAC" "CVX" "MRK" "TRV" "KO" "PG" "WMT" "DIS"
#[21] "UNH" "HD" "BA" "IBM"
# And the ones that are not below our threshold?
names(near.low.band)[!near.low.band]
#[1] "DD" "HPQ" "AXP" "AA" "CAT" "MSFT"