我有一个关于在pivot_table中重新排列列的问题。我希望按月对列进行分组,但安排如下:
JAN FEB
X,Y,X/Y X,Y,X/Y ....
目前的输出是:
JAN FEB JAN FEB JAN ...
X X ... Y Y ... X/Y ...
我在构建包含多列的数据透视表时,已经注意到在Excel中实现的相同行为。
请参阅下面的示例。输出具有第一种格式。 感谢
from pandas import DataFrame,pivot_table
import numpy as np
from datetime import datetime
names=["a","b","c","a","b"]
dates=["20/01/2013","21/01/2013","22/02/2013", "01/03/2013","01/03/2013"]
dico={"x":[1,3,5,7,9], "y":[2,4,6,8,10], "date":dates, "name":names}
df=DataFrame(dico)
df["month"]=[datetime.strptime(x,'%d/%m/%Y').month for x in dates ]
print df
mpivot=pivot_table(df, values=["x","y"],cols=["month"], rows="name",aggfunc=np.sum)
print mpivot
答案 0 :(得分:4)
创建此数据透视表后,您可以执行此操作:
In [11]: p = pivot_table(df, values=["x","y"], cols=["month"],
rows="name", aggfunc=np.sum)
In [12]: p
Out[12]:
x y
month 1 2 3 1 2 3
name
a 1 NaN 7 2 NaN 8
b 3 NaN 9 4 NaN 10
c NaN 5 NaN NaN 6 NaN
首先按switching the column levels,然后sorting by columns:
In [13]: p.reorder_levels([1, 0], axis=1).sort_index(axis=1)
Out[13]:
month 1 2 3
x y x y x y
name
a 1 2 NaN NaN 7 8
b 3 4 NaN NaN 9 10
c NaN NaN 5 6 NaN NaN