(另见以下)
所以我有一些函数和一些操作符用于编码的集合操作程序,我想将电源设置作为一个实用程序(更别关注代码中的注释)。我不想使用二进制方法,但我想使用递归。我在Ralph Oberste-Vorth的书中看到了桥梁到抽象数学电力集的定义(第65页),在下一页我看到所有这些等价,如"如果S = X,则P(S)= P(X),"和"如果A和B是集合,则P(A)U P(B)= P(A U B),"而且我想起了递归。我认为递归可以在这里工作,但我不确定。我正在玩Mathematica的Combinatorica软件包,以及Hasse Diagrams上的一个Haverford College paper,我想我可以锻炼,就像在{4}}进行四分钟一样,某种基于相应图表的方法对于某些大小为n的集合,但我不知道这将导致我正确的方式。我想建立我已经建立的函数/运算符。
#include <iostream>
#include <set>
#include <ostream>
#include <istream>
#include <vector>
using namespace std;
set<int> SetUnion( set<int> A , set<int> B ) // tus koj hlub
{
//A.insert( B.begin() , B.end() );
//return A;
set<int> pump;
for( set<int>::iterator cycle = A.begin() ; cycle != A.end() ; ++cycle )
{
pump.insert(*cycle);
}
for( set<int>::iterator cycle = B.begin() ; cycle != B.end() ; ++cycle )
{
pump.insert(*cycle);
}
return pump;
}
set<int> SetIntersection( set<int> A , set<int> B ) // tus koj hlub
{
set<int> pump;
for( set<int>::iterator cycle = A.begin ; cycle != A.end() ; ++cycle )
{
if( B.find(*cycle) != B.end() )
{
pump.insert(*cycle);
}
}
return pump;
}
set<int> SetDifference( set<int> A , set<int> B )
{
set<int> pump;
for( set<int>::iterator cycle = A.begin ; cycle != A.end() ; ++cycle )
{
if( B.find(*cycle) == B.end() )
{
pump.insert(*cycle);
}
}
return pump;
}
set<int> SymmetricDifference( set<int> A , set<int> B )
{
return SetUnion( SetDifference( A , B ) , SetDifference( B , A ) );
//return SetDifference( SetUnion( A , B ) , SetIntersection( A , B ) );
}
set<set<int>> PowerSet( set<int> A )
{
/*statements*/
}
set<int> Complement( set<int> A , int B )
{
set<int> pump;
for( int i = 1 ; i<=B ; i++ )
{
pump.insert(i);
}
set<int> collect = SetDifference( A , pump );
return collect;
}
set<int> operator+(set<int> A , set<int> B)
{
return SetUnion( A, B );
}
set<int> operator+(set<int> A , int B)
{
set<int> C;
C.insert(B);
return SetUnion( A , C );
}
set<int> operator+(int A , set<int> B)
{
set<int> C;
C.insert(A);
return SetUnion( B , C );
}
set<int> operator-(set<int> A , set<int> B)
{
set<int> pump;
for( set<int>::iterator cycle = A.begin ; cycle != A.end() ; ++cycle )
{
if( B.find(*cycle) == B.end() )
{
pump.insert(*cycle);
}
}
return pump;
}
set<int> operator-(set<int> A , int B)
{
set<int> C;
C.insert(B);
set<int> pump = SetDifference( A , C );
return C;
}
set<int> operator-(int A , set<int> B)
{
set<int> C;
C.insert(A);
set<int> pump = SetDifference( B , C );
return pump;
}
set<int> operator^(set<int> A , set<int> B)
{
return SetUnion( A , B );
}
set<int> operator^(set<int> A , int B)
{
set<int> C;
C.insert(B);
set<int> pump = SetUnion( A , C );
return pump;
}
set<int> operator^(int A , set<int> B)
{
set<int> C;
C.insert(A);
set<int> pump = SetUnion( B , C );
return pump;
}
set<int> operator%(set<int> A , set<int> B)
{
return SymmetricDifference( A , B );
}
set<int> operator%(set<int> A , int B)
{
set<int> C;
C.insert(B);
set<int> pump = SymmetricDifference( A , C );
return pump;
}
set<int> operator%(int A , set<int> B)
{
set<int> C;
C.insert(A);
set<int> pump = SymmetricDifference( B , C );
return pump;
}
set<int> operator~(set<int> A)
{
set<int> pump;
vector<int> hose;
for( set<int>::iterator cycle = A.begin() ; cycle != A.end() ; ++cycle )
{
hose.push_back(*cycle);
}
int last_value =
}
ostream& operator<<(ostream& out , set<int>& B) // tus koj hlub
{
int count=0;
if( B.size() == 0 )
{
out << "{}";
return out;
}
else
{
set<int>::iterator it;
out << "{";
for( it = B.begin() ; it != B.end() ; ++it )
{
++count;
if( count == B.size() )
{
out << *it;
}
else
{
out << *it << ", ";
}
}
out << "}";
return out;
}
}
istream& operator>>(istream& in , set<int>& B) // tus koj hlub
{
int user_input;
while(1)
{
in>>user_input;
if(user_input == -1)
break;
B.insert(user_input);
}
return in;
}
另外,为什么我的&#34;&lt;&lt;&#34;函数中的运算符符号:
ostream& operator<<(ostream& out , set<set<int>>& B)
{
int count=0;
if( B.size() == 0 )
{
out << "{}";
return out;
}
else
{
set<set<int>>::iterator it;
out << "{";
for( it = B.begin() ; it != B.end() ; ++it )
{
count++;
if( count == B.size() )
{
out << *it;
}
else
{
out << *it << ", ";
}
}
out << "}";
return out;
}
}
Shields先生给出的答案产生了以下错误。我试图弄清楚它为什么不起作用:
错误:class&#34; std :: _ Tree_const_iterator,std :: allocator&gt;&gt;&gt;&gt; &#34;没有会员&#34;插入&#34;
作者答:
set<set<int>> PowerSet( const set<int> A )
{
set<set<int>> ps;
if( A.size() == 0 )
{
ps.insert( set<int>() );
return ps;
}
set<int>::iterator it = A.begin();
int n = *it;
set<int> s1 = A;
s1.erase( n );
set<set<int>> ps1 = PowerSet( s1 );
set<set<int>> ps2;
for( set<set<int>>::iterator it = ps1.begin() ; it != ps1.end() ; ++it )
{
set<int> ss = *it;
ss.insert( n );
ps2.insert (ss );
}
for( set<set<int>>::iterator it = ps1.begin() ; it != ps1.end() ; ++it )
{
ps.insert(*it);
}
for( set<set<int>>::iterator it = ps2.begin() ; it != ps2.end() ; ++it )
{
ps.insert( *it );
}
return ps;
}
答案 0 :(得分:0)
下面这个C ++代码可怕低效,但我认为它应该让你知道如何递归地执行此操作。递归规则基本上是这样的:
P({}) = {{}}
P({n} U S) = { {n} U T | T in P(S) } U P(S)
{n} U S
的幂集中的每一个集合都包含n
或不包含n
- S
<幂集中每个集合中的每个集合中只有一个<{1}} / LI>
请注意,一组基数K
具有基数2^K
的幂集。所以你不想在任何大型集合上执行此操作!
set<set<int>> PowerSet( set<int> A )
{
set<set<int>> PA;
if (A.empty())
{
//case: P({}) = {{}}
PA.insert(A);
}
else
{
//case: P({n} U S) = { {n} U T | T in P(S) } U P(S)
int n = *A.begin();
A.erase(A.begin());
//A is now "S" from the explanation above this code
auto PS = PowerSet(A);
for (auto T = PS.begin(); T != PS.end(); ++T)
{
//add each set T from P(S)
PA.insert(*T);
//add each set T from P(S) with n included as well
T->insert(n);
PA.insert(*T);
}
}
return PA;
}