加入两个data.tables后创建新列

时间:2013-01-24 20:40:21

标签: r join data.table

我有两个data.tables,mainmetrics,都由cid键入 我想在表main中添加位于指标中的每个值的平均值。

但是,我想按code进行过滤,只对metrics中给定code的行进行平均。

> metrics
    cid code  DZ value1 value2
1: 1001    A 101      8     21
2: 1001    B 102     11     26
3: 1001    A 103     17     25
4: 1002    A 104     25     39
5: 1002    B 105      6     30
6: 1002    A 106     23     40
7: 1003    A 107     27     32
8: 1003    B 108     16     37
9: 1003    A 109     14     42

# DESIRED OUTPUT
> main
    cid  A.avg.val1   A.avg.val2    B.avg.val1      B.avg.val2    
1: 1001    12.5         23.0            11              26                      
2: 1002    24.0         39.5             6              30            
3: 1003    20.5         37.0            16              37            



#  SAMPLE DATA
set.seed(1)
main <- data.table(cid=1e3+1:3, key="cid")
metrics <- data.table(cid=rep(1e3+1:3, each=3), code=rep(c("A", "B", "A"), 3), DZ=101:109, value1=sample(30, 9), value2=sample(20:50, 9), key="cid")
code.filters <- c("A", "B")

这些行获得了所需的输出,但是我很难将新的col分配回main。 (另外,以编程方式进行是首选)。

main[metrics[code==code.filters[[1]]]][,  list(mean(c(value1))), by=cid]
main[metrics[code==code.filters[[1]]]][,  list(mean(c(value2))), by=cid]
main[metrics[code==code.filters[[2]]]][,  list(mean(c(value1))), by=cid]
main[metrics[code==code.filters[[1]]]][,  list(mean(c(value2))), by=cid]

此外,有人可以解释为什么以下行只取每组中的最后一个值?

main[metrics[ code=="A"],  A.avg.val1 := mean(c(value1))]

3 个答案:

答案 0 :(得分:3)

您不需要main。您可以直接从metrics获取,如下所示:

> tmp.dt <- metrics[, list(A.avg.val1 = mean(value1[code=="A"]), 
                 A.avg.val2 = mean(value2[code=="A"]), 
                 B.avg.val1 = mean(value1[code == "B"]), 
                 B.avg.val2 = mean(value2[code == "B"])), by=cid]

#     cid A.avg.val1 A.avg.val2 B.avg.val1 B.avg.val2
# 1: 1001       12.5       23.0         11         26
# 2: 1002       24.0       39.5          6         30
# 3: 1003       20.5       37.0         16         37

如果您仍希望使用main进行子集,请执行以下操作:

main <- data.table(cid = c(1001:1002))
> tmp.dt[main]

#     cid A.avg.val1 A.avg.val2 B.avg.val1 B.avg.val2
# 1: 1001       12.5       23.0         11         26
# 2: 1002       24.0       39.5          6         30

答案 1 :(得分:2)

我会分两步完成。首先,获取您的资金,然后reshape数据

foo <- main[metrics]
bar <- foo[, list(val1 = mean(value1), 
                  val2 = mean(value2)), 
           by=c('cid', 'code')]

library(reshape2)
bar.melt <- melt(bar, id.var=c('cid', 'code'))
dcast(data=bar.melt,
      cid ~ code + variable)

但实际上,我可能会将数据保留为“长”格式,因为我发现它更容易使用!

答案 2 :(得分:2)

使用@ Arun的答案,以下内容得到了预期的结果:

invisible( 
sapply(code.filters, function(cf)
    main[metrics[code==cf, list(avgv1 = mean(value1), avgv2 = mean(value2)), by=cid],
      paste0(cf, c(".avg.val1", ".avg.val2")) :=list(avgv1, avgv2)]
))

> main
    cid A.avg.val1 A.avg.val2 B.avg.val1 B.avg.val2
1: 1001       12.5       23.0         11         26
2: 1002       24.0       39.5          6         30
3: 1003       20.5       37.0         16         37