对于固定整数n
,我有一组2(n-1)
联立方程如下。
M(p) = 1+((n-p-1)/n)*M(n-1) + (2/n)*N(p-1) + ((p-1)/n)*M(p-1)
N(p) = 1+((n-p-1)/n)*M(n-1) + (p/n)*N(p-1)
M(1) = 1+((n-2)/n)*M(n-1) + (2/n)*N(0)
N(0) = 1+((n-1)/n)*M(n-1)
M(p)
是为1 <= p <= n-1
定义的。 N(p)
定义了0 <= p <= n-2
。另请注意,p
在每个等式中只是一个常数整数,因此整个系统是线性的。
我一直在使用Maple但是我想现在设置它们并在python中解决它们,可能使用numpy.linalg.solve
(或任何其他更好的方法)。我实际上只想要M(n-1)
的值。例如,当n=2
答案应为M(1) = 4
时,我相信。这是因为方程变为
M(1) = 1+(2/2)*N(0)
N(0) = 1 + (1/2)*M(1)
因此
M(1)/2 = 1+1
等等
M(1) = 4.
如果我想插入n=50
,那么,如何在python中设置这个联立方程组,以便numpy.linalg.solve可以解决它们?
更新答案很棒,但他们使用密集求解器,方程组很稀疏。发布跟进Using scipy sparse matrices to solve system of equations。
答案 0 :(得分:6)
更新:使用scipy.sparse添加实现
这按照N_max,...,N_0,M_max,...,M_1
的顺序给出了解决方案。
要求解的线性系统的形状为A dot x == const 1-vector
。
x
是寻求的解决方案向量
在这里,我订购了等式,x
为N_max,...,N_0,M_max,...,M_1
然后我从4个块矩阵构建A
- 系数矩阵。
以下是示例案例n=50
的快照,展示了如何推导系数矩阵并理解块结构。系数矩阵A
为浅蓝色,常数右侧为橙色。寻求的解决方案向量x
在这里是浅绿色并用于标记列。第一列显示了上面给出的eqs中的哪一个。行(= eq。)已派生:
正如Jaime建议的那样,乘以n
可以改善代码。这不会反映在上面的电子表格中,但已在下面的代码中实现:
使用numpy实现:
import numpy as np
import numpy.linalg as linalg
def solve(n):
# upper left block
n_to_M = -2. * np.eye(n-1)
# lower left block
n_to_N = (n * np.eye(n-1)) - np.diag(np.arange(n-2, 0, -1), 1)
# upper right block
m_to_M = n_to_N.copy()
m_to_M[1:, 0] = -np.arange(1, n-1)
# lower right block
m_to_N = np.zeros((n-1, n-1))
m_to_N[:,0] = -np.arange(1,n)
# build A, combine all blocks
coeff_mat = np.hstack(
(np.vstack((n_to_M, n_to_N)),
np.vstack((m_to_M, m_to_N))))
# const vector, right side of eq.
const = n * np.ones((2 * (n-1),1))
return linalg.solve(coeff_mat, const)
使用scipy.sparse的解决方案:
from scipy.sparse import spdiags, lil_matrix, vstack, hstack
from scipy.sparse.linalg import spsolve
import numpy as np
def solve(n):
nrange = np.arange(n)
diag = np.ones(n-1)
# upper left block
n_to_M = spdiags(-2. * diag, 0, n-1, n-1)
# lower left block
n_to_N = spdiags([n * diag, -nrange[-1:0:-1]], [0, 1], n-1, n-1)
# upper right block
m_to_M = lil_matrix(n_to_N)
m_to_M[1:, 0] = -nrange[1:-1].reshape((n-2, 1))
# lower right block
m_to_N = lil_matrix((n-1, n-1))
m_to_N[:, 0] = -nrange[1:].reshape((n-1, 1))
# build A, combine all blocks
coeff_mat = hstack(
(vstack((n_to_M, n_to_N)),
vstack((m_to_M, m_to_N))))
# const vector, right side of eq.
const = n * np.ones((2 * (n-1),1))
return spsolve(coeff_mat.tocsr(), const).reshape((-1,1))
n=4
的示例:
[[ 7.25 ]
[ 7.76315789]
[ 8.10526316]
[ 9.47368421] # <<< your result
[ 9.69736842]
[ 9.78947368]]
n=10
的示例:
[[ 24.778976 ]
[ 25.85117842]
[ 26.65015984]
[ 27.26010007]
[ 27.73593401]
[ 28.11441922]
[ 28.42073207]
[ 28.67249606]
[ 28.88229939]
[ 30.98033266] # <<< your result
[ 31.28067182]
[ 31.44628982]
[ 31.53365219]
[ 31.57506477]
[ 31.58936225]
[ 31.58770694]
[ 31.57680467]
[ 31.560726 ]]
答案 1 :(得分:3)
这很麻烦,但解决了你的问题,除非转录系数的可能性很大:
from __future__ import division
import numpy as np
n = 2
# Solution vector is [N[0], N[1], ..., N[n - 2], M[1], M[2], ..., M[n - 1]]
n_pos = lambda p : p
m_pos = lambda p : p + n - 2
A = np.zeros((2 * (n - 1), 2 * (n - 1)))
# p = 0
# N[0] + (1 - n) / n * M[n-1] = 1
A[n_pos(0), n_pos(0)] = 1 # N[0]
A[n_pos(0), m_pos(n - 1)] = (1 - n) / n #M[n - 1]
for p in xrange(1, n - 1) :
# M[p] + (1 + p - n) /n * M[n - 1] - 2 / n * N[p - 1] +
# (1 - p) / n * M[p - 1] = 1
A[m_pos(p), m_pos(p)] = 1 # M[p]
A[m_pos(p), m_pos(n - 1)] = (1 + p - n) / n # M[n - 1]
A[m_pos(p), n_pos(p - 1)] = -2 / n # N[p - 1]
if p > 1 :
A[m_pos(p), m_pos(p - 1)] = (1 - p) / n # M[p - 1]
# N[p] + (1 + p -n) / n * M[n - 1] - p / n * N[p - 1] = 1
A[n_pos(p), n_pos(p)] = 1 # N[p]
A[n_pos(p), m_pos(n - 1)] = (1 + p - n) / n # M[n - 1]
A[n_pos(p), n_pos(p - 1)] = -p / n # N[p - 1]
if n > 2 :
# p = n - 1
# M[n - 1] - 2 / n * N[n - 2] + (2 - n) / n * M[n - 2] = 1
A[m_pos(n - 1), m_pos(n - 1)] = 1 # M[n - 1]
A[m_pos(n - 1), n_pos(n - 2)] = -2 / n # N[n - 2]
A[m_pos(n - 1), m_pos(n - 2)] = (2 - n) / n # M[n - 2]
else :
# p = 1
#M[1] - 2 / n * N[0] = 1
A[m_pos(n - 1), m_pos(n - 1)] = 1
A[m_pos(n - 1), n_pos(n - 2)] = -2 / n
X = np.linalg.solve(A, np.ones((2 * (n - 1),)))
但它提供了
的解决方案>>> X[-1]
6.5999999999999979
<{1}} M(2)
时的,这不是你想出来的。
答案 2 :(得分:3)
这是一种完全不同的方法,使用sympy
。它并不快,但它允许我精确复制方程的RHS,限制我需要做的思考(总是一个加号),并给出分数答案。
from sympy import Integer, Symbol, Eq, solve
def build_equations(n):
ni = n
n = Integer(n)
Ms = {p: Symbol("M{}".format(p)) for p in range(ni)}
Ns = {p: Symbol("N{}".format(p)) for p in range(ni-1)}
M = lambda i: Ms[int(i)] if i >= 1 else 0
N = lambda i: Ns[int(i)]
M_eqs = {}
M_eqs[1] = Eq(M(1), 1+((n-2)/n)*M(n-1) + (2/n)*N(0))
for p in range(2, ni):
M_eqs[p] = Eq(M(p), 1+((n-p-1)/n)*M(n-1) + (2/n)*N(p-1) + ((p-1)/n)*M(p-1))
N_eqs = {}
N_eqs[0] = Eq(N(0), 1+((n-1)/n)*M(n-1))
for p in range(1, ni-1):
N_eqs[p] = Eq(N(p), 1+((n-p-1)/n)*M(n-1) + (p/n)*N(p-1))
return M_eqs.values() + N_eqs.values()
def solve_system(n, show=False):
eqs = build_equations(n)
sol = solve(eqs)
if show:
print 'equations:'
for eq in sorted(eqs):
print eq
print 'solution:'
for var, val in sorted(sol.items()):
print var, val, float(val)
return sol
给出了
>>> solve_system(2, True)
equations:
M1 == N0 + 1
N0 == M1/2 + 1
solution:
M1 4 4.0
N0 3 3.0
{M1: 4, N0: 3}
>>> solve_system(3, True)
equations:
M1 == M2/3 + 2*N0/3 + 1
M2 == M1/3 + 2*N1/3 + 1
N0 == 2*M2/3 + 1
N1 == M2/3 + N0/3 + 1
solution:
M1 34/5 6.8
M2 33/5 6.6
N0 27/5 5.4
N1 5 5.0
{M2: 33/5, M1: 34/5, N1: 5, N0: 27/5}
和
>>> solve_system(4, True)
equations:
M1 == M3/2 + N0/2 + 1
M2 == M1/4 + M3/4 + N1/2 + 1
M3 == M2/2 + N2/2 + 1
N0 == 3*M3/4 + 1
N1 == M3/2 + N0/4 + 1
N2 == M3/4 + N1/2 + 1
solution:
M1 186/19 9.78947368421
M2 737/76 9.69736842105
M3 180/19 9.47368421053
N0 154/19 8.10526315789
N1 295/38 7.76315789474
N2 29/4 7.25
{N2: 29/4, N1: 295/38, M1: 186/19, M3: 180/19, N0: 154/19, M2: 737/76}
似乎与其他答案相符。