我正在使用android openCV,我想检测图像中的三角形,矩形和圆形。所以我这样做:Canny => findContours => approxPolyDP并获取此图片:
Image Hosted by ImageShack.us http://imageshack.us/a/img839/8100/device20130114224716.png
然而,approxPolyDP的结果包含很多顶点,所以我无法确定它是哪个形状。为了消除顶点,我想检测每个轮廓中的线并找到它们的交点。如何为单个轮廓做到这一点?
答案 0 :(得分:4)
对于圆圈检测,请使用HoughCircles。
然后在这里你只是寻找简化的多边形(三角形和正方形)。你试过在aptPolyDP中调整epsilon吗?
以下是openCV squares.cpp sample code的示例代码段 - 了解近似精度(epsilon,aboutPolyDP的第三个参数)是如何相对于轮廓的大小设置的。
C ++代码,但openCV接口应该是相同的,所以我确信它可以直接适应您的环境。
// test each contour
for( size_t i = 0; i < contours.size(); i++ )
{
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx,
arcLength(Mat(contours[i]), true)*0.02, true);
// square contours should have 4 vertices after approximation
// relatively large area (to filter out noisy contours)
// and be convex.
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if( approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 1000 &&
isContourConvex(Mat(approx)) )
{
double maxCosine = 0;
for( int j = 2; j < 5; j++ )
{
// find the maximum cosine of the angle between joint edges
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
// if cosines of all angles are small
// (all angles are ~90 degree) then write quandrange
// vertices to resultant sequence
if( maxCosine < 0.3 )
squares.push_back(approx);
}
}