在StoryBoard视图中隐藏UINavigationController顶部栏

时间:2012-10-05 12:10:30

标签: ios uinavigationcontroller

我试图从我的故事板视图中隐藏导航控制器顶栏,因为我实际上是以编程方式隐藏它并且当Iloit在执行时间中被重新标记时

这是一张图片,您可以更好地理解它: enter image description here

顶部栏没有出现在我的应用程序中,我也想将它隐藏在故事板中。 任何线索?

提前致谢!

2 个答案:

答案 0 :(得分:7)

选择导航控制器,然后转到右侧栏中的设置:

enter image description here

在"导航控制器"部分,取消选中"显示导航栏",你就好了!

这是你得到的:

enter image description here

答案 1 :(得分:0)

或者您可以使用以下代码将其关闭我希望这对您有用!

import tensorflow as tf
from tensorflow import flags 
FLAGS = tf.app.flags.FLAGS
flags.DEFINE_string('train_dir', 'data', 'Directory to put the training data.')
import numpy as np
from skimage import exposure
import os
import matplotlib.pyplot as plt
import random

def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1 ], padding='SAME')

def get_data():
    image_dims = [100]
    np_array_mask = np.zeros(image_dims)
    x = random.sample(range(0,100),2)
    x.sort()
    np_array_mask[x[0]:x[1]]=1
    np_array = np_array_mask + np.random.normal(np.zeros(image_dims),0.01)
    return (np_array,np_array_mask)


def training():
    with tf.Graph().as_default():
        segment_size = (100,1)
        flat_size = np.prod(segment_size)
        x = tf.placeholder(tf.float32, shape=[None, flat_size])
        y_ = tf.placeholder(tf.float32, shape=[None, flat_size])
        x_shape = [-1] + list(segment_size) + [1]
        x_image = tf.reshape(x, x_shape)
        W_conv1 = weight_variable([7, 1, 1, 10])
        b_conv1 = bias_variable([10])
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)


        W_conv2 = weight_variable([7, 1, 10, 10])
        b_conv2 = bias_variable([10])
        h_conv2 = tf.nn.relu(conv2d(h_conv1, W_conv2) + b_conv2)


        W_fc1 = weight_variable([flat_size*10, flat_size])
        b_fc1 = bias_variable([flat_size])
        h_conv1_flat = tf.reshape(h_conv2, [-1, flat_size*10])
        h_fc1 = tf.nn.relu(tf.matmul(h_conv1_flat, W_fc1) + b_fc1)

        keep_prob = tf.placeholder(tf.float32)
        #h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

        W_fc2 = weight_variable([flat_size, flat_size])
        b_fc2 = bias_variable([flat_size])

        y_conv=tf.nn.sigmoid(tf.matmul(h_fc1, W_fc2) + b_fc2)

        step = tf.Variable(0)
        learning_rate = tf.train.exponential_decay(
      0.1,   # Base learning rate.
      step,  # Current index into the dataset.
      .1,     # Decay step.
      0.1    # Decay rate
        )

        opt = tf.train.GradientDescentOptimizer(learning_rate)
        cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(y_conv ,y_))
        train_op = opt.minimize(cost,global_step=step)
        correct_prediction = tf.div(tf.reduce_sum(tf.mul(y_conv,y_)),tf.reduce_sum(y_conv))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        data = [get_data() for i in range(0,1000)]
        sess = tf.Session()
        summary_op = tf.merge_all_summaries()
        summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)
        sess.run(tf.initialize_all_variables())
        for epoch in range(0,200):
            random.shuffle(data)
            train_data = data[0:50]
            for i in range(20):
                batch = [exposure.rescale_intensity(vol[0],out_range=(-1,1)) for j in range(50*i,50*i+50) for vol in train_data] 
                batchy = [train_data[i][1] for j in range(50*i, 50*i+50) for vol in train_data ] 
                feed_dict = {x:batch, y_: batchy, keep_prob: 0.5}
                if i%10 == 0 and i >0:
                    train_accuracy = sess.run(accuracy,feed_dict={x:batch, y_: batchy, keep_prob: 1.0})
                    print("step %d, epoch %d training accuracy %g "%(i, epoch, train_accuracy))
                _, loss_val = sess.run([train_op,cost],feed_dict=feed_dict)
        ind = random.randrange(800,1000)
        test_case = get_data()
        batch = [exposure.rescale_intensity(test_case[0],out_range=(-1,1))] 
        batchy = [test_case[1]] 
        y_out = sess.run(y_conv,feed_dict={x:batch, keep_prob: 1.0})
        y_out = np.reshape(y_out,[100])

        plt.plot(batch[0])
        plt.plot(batchy[0])
        plt.plot(y_out)
        plt.show()

def main():
    training()

if __name__=='__main__':
    main()