如何通过LINQ压扁树?

时间:2012-08-06 14:22:05

标签: c# .net linq .net-4.0 tree

所以我有一棵简单的树:

class MyNode
{
 public MyNode Parent;
 public IEnumerable<MyNode> Elements;
 int group = 1;
}

我有IEnumerable<MyNode>。我希望将所有MyNode的列表(包括内部节点对象(Elements))作为一个平面列表Where group == 1。如何通过LINQ做这样的事情?

14 个答案:

答案 0 :(得分:126)

你可以像这样展平一棵树:

IEnumerable<MyNode> Flatten(IEnumerable<MyNode> e) {
    return e.SelectMany(c => Flatten(c.Elements)).Concat(new[] {e});
}

然后,您可以使用groupWhere(...)进行过滤。

要获得一些“风格点”,请将Flatten转换为静态类中的扩展函数。

public static IEnumerable<MyNode> Flatten(this IEnumerable<MyNode> e) {
    return e.SelectMany(c => c.Elements.Flatten()).Concat(e);
}

要为“更好的风格”获得一些积分,请将Flatten转换为采用树和生成后代的函数的通用扩展方法:

public static IEnumerable<T> Flatten<T>(
    this IEnumerable<T> e,
    Func<T,IEnumerable<T>> f) 
{
    return e.SelectMany(c => f(c).Flatten(f)).Concat(e);
}

像这样调用此函数:

IEnumerable<MyNode> tree = ....
var res = tree.Flatten(node => node.Elements);

如果您希望在预订中而不是在订购后进行展平,请切换Concat(...)的两侧。

答案 1 :(得分:115)

接受答案的问题是,如果树很深,效率很低。如果树非常深,那么它会使堆栈爆炸。您可以使用显式堆栈来解决问题:

public static IEnumerable<MyNode> Traverse(this MyNode root)
{
    var stack = new Stack<MyNode>();
    stack.Push(root);
    while(stack.Count > 0)
    {
        var current = stack.Pop();
        yield return current;
        foreach(var child in current.Elements)
            stack.Push(child);
    }
}

假设高度为h的树中的n个节点和分支因子远小于n,则该方法在堆栈空间中为O(1),在堆空间中为O(h),在时间上为O(n)。给出的另一算法是堆栈中的O(h),堆中的O(1)和时间上的O(nh)。如果分支因子与n相比较小则则h在O(lg n)和O(n)之间,这说明如果h接近n,则天真算法可以使用危险量的堆栈和大量时间。

现在我们进行了遍历,您的查询非常简单:

root.Traverse().Where(item=>item.group == 1);

答案 2 :(得分:22)

为了完整起见,这里是来自dasblinkenlight和Eric Lippert的答案的组合。单元测试和一切。 : - )

 public static IEnumerable<T> Flatten<T>(
        this IEnumerable<T> items,
        Func<T, IEnumerable<T>> getChildren)
 {
     var stack = new Stack<T>();
     foreach(var item in items)
         stack.Push(item);

     while(stack.Count > 0)
     {
         var current = stack.Pop();
         yield return current;

         var children = getChildren(current);
         if (children == null) continue;

         foreach (var child in children) 
            stack.Push(child);
     }
 }

答案 3 :(得分:20)

<强>更新

对于对嵌套水平感兴趣的人(深度)。显式枚举器堆栈实现的一个好处是,在任何时刻(特别是当产生元素时)stack.Count表示当前的处理深度。因此,考虑到这一点并使用C#7.0值元组,我们可以简单地更改方法声明如下:

public static IEnumerable<(T Item, int Level)> ExpandWithLevel<T>(
    this IEnumerable<T> source, Func<T, IEnumerable<T>> elementSelector)

yield声明:

yield return (item, stack.Count);

然后我们可以通过在上面应用简单的Select来实现原始方法:

public static IEnumerable<T> Expand<T>(
    this IEnumerable<T> source, Func<T, IEnumerable<T>> elementSelector) =>
    source.ExpandWithLevel(elementSelector).Select(e => e.Item);

原文:

令人惊讶的是,没有人(甚至是埃里克)表现出自然的&#34;递归预订DFT的迭代端口,所以这里是:

    public static IEnumerable<T> Expand<T>(
        this IEnumerable<T> source, Func<T, IEnumerable<T>> elementSelector)
    {
        var stack = new Stack<IEnumerator<T>>();
        var e = source.GetEnumerator();
        try
        {
            while (true)
            {
                while (e.MoveNext())
                {
                    var item = e.Current;
                    yield return item;
                    var elements = elementSelector(item);
                    if (elements == null) continue;
                    stack.Push(e);
                    e = elements.GetEnumerator();
                }
                if (stack.Count == 0) break;
                e.Dispose();
                e = stack.Pop();
            }
        }
        finally
        {
            e.Dispose();
            while (stack.Count != 0) stack.Pop().Dispose();
        }
    }

答案 4 :(得分:4)

如果其他人发现了这一点,但在他们将树木弄平之后也需要知道水平,这扩展了Konamiman的dasblinkenlight和Eric Lippert的解决方案的组合:

    public static IEnumerable<Tuple<T, int>> FlattenWithLevel<T>(
            this IEnumerable<T> items,
            Func<T, IEnumerable<T>> getChilds)
    {
        var stack = new Stack<Tuple<T, int>>();
        foreach (var item in items)
            stack.Push(new Tuple<T, int>(item, 1));

        while (stack.Count > 0)
        {
            var current = stack.Pop();
            yield return current;
            foreach (var child in getChilds(current.Item1))
                stack.Push(new Tuple<T, int>(child, current.Item2 + 1));
        }
    }

答案 5 :(得分:3)

我发现这里给出的答案有一些小问题:

  • 如果项目的初始列表为空怎么办?
  • 如果子列表中有空值怎么办?

基于先前的答案,并提出以下建议:

public static class IEnumerableExtensions
{
    public static IEnumerable<T> Flatten<T>(
        this IEnumerable<T> items, 
        Func<T, IEnumerable<T>> getChildren)
    {
        if (items == null)
            yield break;

        var stack = new Stack<T>(items);
        while (stack.Count > 0)
        {
            var current = stack.Pop();
            yield return current;

            if (current == null) continue;

            var children = getChildren(current);
            if (children == null) continue;

            foreach (var child in children)
                stack.Push(child);
        }
    }
}

单元测试:

[TestClass]
public class IEnumerableExtensionsTests
{
    [TestMethod]
    public void NullList()
    {
        IEnumerable<Test> items = null;
        var flattened = items.Flatten(i => i.Children);
        Assert.AreEqual(0, flattened.Count());
    }
    [TestMethod]
    public void EmptyList()
    {
        var items = new Test[0];
        var flattened = items.Flatten(i => i.Children);
        Assert.AreEqual(0, flattened.Count());
    }
    [TestMethod]
    public void OneItem()
    {
        var items = new[] { new Test() };
        var flattened = items.Flatten(i => i.Children);
        Assert.AreEqual(1, flattened.Count());
    }
    [TestMethod]
    public void OneItemWithChild()
    {
        var items = new[] { new Test { Id = 1, Children = new[] { new Test { Id = 2 } } } };
        var flattened = items.Flatten(i => i.Children);
        Assert.AreEqual(2, flattened.Count());
        Assert.IsTrue(flattened.Any(i => i.Id == 1));
        Assert.IsTrue(flattened.Any(i => i.Id == 2));
    }
    [TestMethod]
    public void OneItemWithNullChild()
    {
        var items = new[] { new Test { Id = 1, Children = new Test[] { null } } };
        var flattened = items.Flatten(i => i.Children);
        Assert.AreEqual(2, flattened.Count());
        Assert.IsTrue(flattened.Any(i => i.Id == 1));
        Assert.IsTrue(flattened.Any(i => i == null));
    }
    class Test
    {
        public int Id { get; set; }
        public IEnumerable<Test> Children { get; set; }
    }
}

答案 6 :(得分:1)

另一种选择是具有适当的OO设计。

例如要求MyNode返回所有拼合。

赞:

class MyNode
{
    public MyNode Parent;
    public IEnumerable<MyNode> Elements;
    int group = 1;

    public IEnumerable<MyNode> GetAllNodes()
    {
        if (Elements == null)
        {
            return new List<MyNode>(); 
        }

        return Elements.SelectMany(e => e.GetAllNodes());
    }
}

现在,您可以要求顶级MyNode获取所有节点。

var flatten = topNode.GetAllNodes();

如果您无法编辑课程,那么这不是一个选择。但是否则,我认为这可能是单独的(递归)LINQ方法的首选。

这是使用LINQ,所以我认为此答案适用于此;)

答案 7 :(得分:1)

这里有一些可以使用Queue的现成的实现,可以先返回Flatten树,然后返回我的孩子。

public static IEnumerable<T> Flatten<T>(this IEnumerable<T> items, 
    Func<T,IEnumerable<T>> getChildren)
    {
        if (items == null)
            yield break;

        var queue = new Queue<T>();

        foreach (var item in items) {
            if (item == null)
                continue;

            queue.Enqueue(item);

            while (queue.Count > 0) {
                var current = queue.Dequeue();
                yield return current;

                if (current == null)
                    continue;

                var children = getChildren(current);
                if (children == null)
                    continue;

                foreach (var child in children)
                    queue.Enqueue(child);
            }
        }

    }

答案 8 :(得分:1)

此处给出的大多数答案都产生depth-first或之字形序列。例如,从下面的树开始:

        1                   2 
       / \                 / \
      /   \               /   \
     /     \             /     \
    /       \           /       \
   11       12         21       22
  / \       / \       / \       / \
 /   \     /   \     /   \     /   \
111 112   121 122   211 212   221 222

dasblinkenlight的answer产生以下扁平化的序列:

111, 112, 121, 122, 11, 12, 211, 212, 221, 222, 21, 22, 1, 2

Konamiman的answer(概括了Eric Lippert的answer)产生了这种扁平化的序列:

2, 22, 222, 221, 21, 212, 211, 1, 12, 122, 121, 11, 112, 111

伊万·斯托耶夫(Ivan Stoev)的answer产生了以下扁平化序列:

1, 11, 111, 112, 12, 121, 122, 2, 21, 211, 212, 22, 221, 222

如果您对这样的breadth-first序列感兴趣:

1, 2, 11, 12, 21, 22, 111, 112, 121, 122, 211, 212, 221, 222

...那么这就是您的解决方案:

public static IEnumerable<T> Flatten<T>(this IEnumerable<T> source,
    Func<T, IEnumerable<T>> childrenSelector)
{
    var queue = new Queue<T>(source);
    while (queue.Count > 0)
    {
        var current = queue.Dequeue();
        yield return current;
        var children = childrenSelector(current);
        if (children == null) continue;
        foreach (var child in children) queue.Enqueue(child);
    }
}

实现上的区别基本上是使用Queue而不是Stack。没有实际的排序。


警告:就内存效率而言,此实现绝非最佳选择,因为在枚举过程中,大部分元素总数最终将存储在内部队列中。与基于Stack的实现相比,基于Queue的树遍历在内存使用方面效率更高。

答案 9 :(得分:0)

void Main()
{
    var allNodes = GetTreeNodes().Flatten(x => x.Elements);

    allNodes.Dump();
}

public static class ExtensionMethods
{
    public static IEnumerable<T> Flatten<T>(this IEnumerable<T> source, Func<T, IEnumerable<T>> childrenSelector = null)
    {
        if (source == null)
        {
            return new List<T>();
        }

        var list = source;

        if (childrenSelector != null)
        {
            foreach (var item in source)
            {
                list = list.Concat(childrenSelector(item).Flatten(childrenSelector));
            }
        }

        return list;
    }
}

IEnumerable<MyNode> GetTreeNodes() {
    return new[] { 
        new MyNode { Elements = new[] { new MyNode() }},
        new MyNode { Elements = new[] { new MyNode(), new MyNode(), new MyNode() }}
    };
}

class MyNode
{
    public MyNode Parent;
    public IEnumerable<MyNode> Elements;
    int group = 1;
}

答案 10 :(得分:0)

结合Dave和Ivan Stoev的答案,以防您需要嵌套级别并且列表变平并按顺序排列&#34;而不是像Konamiman给出的答案那样逆转。

 public static class HierarchicalEnumerableUtils
    {
        private static IEnumerable<Tuple<T, int>> ToLeveled<T>(this IEnumerable<T> source, int level)
        {
            if (source == null)
            {
                return null;
            }
            else
            {
                return source.Select(item => new Tuple<T, int>(item, level));
            }
        }

        public static IEnumerable<Tuple<T, int>> FlattenWithLevel<T>(this IEnumerable<T> source, Func<T, IEnumerable<T>> elementSelector)
        {
            var stack = new Stack<IEnumerator<Tuple<T, int>>>();
            var leveledSource = source.ToLeveled(0);
            var e = leveledSource.GetEnumerator();
            try
            {
                while (true)
                {
                    while (e.MoveNext())
                    {
                        var item = e.Current;
                        yield return item;
                        var elements = elementSelector(item.Item1).ToLeveled(item.Item2 + 1);
                        if (elements == null) continue;
                        stack.Push(e);
                        e = elements.GetEnumerator();
                    }
                    if (stack.Count == 0) break;
                    e.Dispose();
                    e = stack.Pop();
                }
            }
            finally
            {
                e.Dispose();
                while (stack.Count != 0) stack.Pop().Dispose();
            }
        }
    }

答案 11 :(得分:0)

基于Konamiman的回答以及排序意外的评论,这里是一个带有显式排序参数的版本:

public static IEnumerable<T> TraverseAndFlatten<T, V>(this IEnumerable<T> items, Func<T, IEnumerable<T>> nested, Func<T, V> orderBy)
{
    var stack = new Stack<T>();
    foreach (var item in items.OrderBy(orderBy))
        stack.Push(item);

    while (stack.Count > 0)
    {
        var current = stack.Pop();
        yield return current;

        var children = nested(current).OrderBy(orderBy);
        if (children == null) continue;

        foreach (var child in children)
            stack.Push(child);
    }
}

示例用法:

var flattened = doc.TraverseAndFlatten(x => x.DependentDocuments, y => y.Document.DocDated).ToList();

答案 12 :(得分:0)

下面是Ivan Stoev的代码,它具有告诉路径中每个对象的索引的附加功能。例如。搜索“Item_120”:

Item_0--Item_00
        Item_01

Item_1--Item_10
        Item_11
        Item_12--Item_120

将返回该项和一个int数组[1,2,0]。显然,嵌套级别也可用,作为数组的长度。

public static IEnumerable<(T, int[])> Expand<T>(this IEnumerable<T> source, Func<T, IEnumerable<T>> getChildren) {
    var stack = new Stack<IEnumerator<T>>();
    var e = source.GetEnumerator();
    List<int> indexes = new List<int>() { -1 };
    try {
        while (true) {
            while (e.MoveNext()) {
                var item = e.Current;
                indexes[stack.Count]++;
                yield return (item, indexes.Take(stack.Count + 1).ToArray());
                var elements = getChildren(item);
                if (elements == null) continue;
                stack.Push(e);
                e = elements.GetEnumerator();
                if (indexes.Count == stack.Count)
                    indexes.Add(-1);
                }
            if (stack.Count == 0) break;
            e.Dispose();
            indexes[stack.Count] = -1;
            e = stack.Pop();
        }
    } finally {
        e.Dispose();
        while (stack.Count != 0) stack.Pop().Dispose();
    }
}

答案 13 :(得分:0)

我偶尔会尝试解决这个问题,并设计自己的解决方案以支持任意深度的结构(不进行递归),执行广度优先遍历并且不滥用过多的LINQ查询或对子级执行递归。在深入研究.NET source并尝试了许多解决方案之后,我终于提出了这个解决方案。最终结果与Ian Stoev的答案非常接近(我刚刚才看到它的答案),但是我的并没有利用无限循环或异常的代码流。

public static IEnumerable<T> Traverse<T>(
    this IEnumerable<T> source,
    Func<T, IEnumerable<T>> fnRecurse)
{
    if (source != null)
    {
        Stack<IEnumerator<T>> enumerators = new Stack<IEnumerator<T>>();
        try
        {
            enumerators.Push(source.GetEnumerator());
            while (enumerators.Count > 0)
            {
                var top = enumerators.Peek();
                while (top.MoveNext())
                {
                    yield return top.Current;

                    var children = fnRecurse(top.Current);
                    if (children != null)
                    {
                        top = children.GetEnumerator();
                        enumerators.Push(top);
                    }
                }

                enumerators.Pop().Dispose();
            }
        }
        finally
        {
            while (enumerators.Count > 0)
                enumerators.Pop().Dispose();
        }
    }
}

可以找到一个有效的示例here