我构建了两个包含图像直方图值的字典。每个字典都有图像文件的文件名作为键,三个一维向量的列表作为其值组合在一起。
示例: {'someFileName.jpg' : ['forecolor=2,3,5,5,6','edge=2,4,5','texture=5,4,3']}
以下是我的一本词典的实际代表:
Dictionary1
{'/Users/images/Transcend-8GB-Class-10-SDHC-Flash-Memory-Card.jpg': ['fcolor=2,4,14,5,0,0,0,0,0,0,0,0,0,0,12,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,6,0,0,0,0,1,0,0,0,0,0,0,0,0,0,20,9,0,0,0,2,2,0,0,0,0,0,0,0,0,0,13,6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,10,8,0,0,0,1,2,0,0,0,0,0,0,0,0,0,17,17,0,0,0,3,6,0,0,0,0,0,0,0,0,0,7,5,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,3,0,0,0,1,1,0,0,0,0,0,0,0,0,0,6,6,0,0,0,2,3', 'edge=1,252,1,32,124,194,63,252,67,15,240,1,7,244,66,47,0,192,63', 'texture=1,78,27,37,13,6,6,7,78']}
Dictionary2
{'/Users/images/kodax-camera-M531.jpg': ['fcolor=2,74,6,20,30,1,2,0,1,0,0,0,1,3,2,0,0,0,0,0,1,1,1,0,0,2,0,0,0,2,2,0,0,0,0,0,2,2,1,0,0,5,0,0,0,1,4,0,0,0,0,0,2,2,1,0,0,1,0,0,0,3,1,0,0,0,0,0,1,1,0,0,0,3,0,0,0,1,2,0,0,0,0,0,2,2,1,0,0,4,0,0,0,0,5,0,0,0,0,0,2,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0', 'edge=1,4,1,88,128,22,8,39,25,142,230,226,31,60,64,255,252,12,76', 'texture=1,15,32,31,28,19,16,12,98']}
我的最终目标是将这些词典中的两个传递给一个方法并实际运行cosign值,
示例:因此每个字典都有列表作为其值,因此对于每个字典键,我想在dictionary1' s key1之间进行向量乘法,velu1与dictionary2 key1,value1,
我有矢量乘法函数所以我试图弄清楚如何正确迭代,我正在考虑使用yield函数,但是当我尝试时它并没有真正起作用。这就是我到目前为止所做的:
def cosignSimilarity(image1VectorDict, image2VectorDict):
for image1Key, image2Value in image1VectorDict.iteritems():
print image1Key
for aValue in image1Value:
print aValue
for image2Key, image2Value in image2VectorDict.iteritems():
for eValue in image2Value:
print aValue
print "\n"
print eValue
仅供参考:我没有在cosign计算方面寻求帮助。
如果我可以将密钥从一个字典隔离到另一个字典,那么我的当前代码将数据吐出的方式然后我可以完成剩下的工作,例如计算余弦值。
First Dictionary
{'/Users/test/Transcend-8GB-Class-10-SDHC-Flash-Memory-Card.jpg': ['fcolor=2,4,14,5,0,0,0,0,0,0,0,0,0,0,12,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,6,0,0,0,0,1,0,0,0,0,0,0,0,0,0,20,9,0,0,0,2,2,0,0,0,0,0,0,0,0,0,13,6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,10,8,0,0,0,1,2,0,0,0,0,0,0,0,0,0,17,17,0,0,0,3,6,0,0,0,0,0,0,0,0,0,7,5,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,3,0,0,0,1,1,0,0,0,0,0,0,0,0,0,6,6,0,0,0,2,3', 'edge=1,252,1,32,124,194,63,252,67,15,240,1,7,244,66,47,0,192,63', 'texture=1,78,27,37,13,6,6,7,78']}
------------------
Second Dictionary
{'/Users/test/kodax-camera-M531.jpg': ['fcolor=2,74,6,20,30,1,2,0,1,0,0,0,1,3,2,0,0,0,0,0,1,1,1,0,0,2,0,0,0,2,2,0,0,0,0,0,2,2,1,0,0,5,0,0,0,1,4,0,0,0,0,0,2,2,1,0,0,1,0,0,0,3,1,0,0,0,0,0,1,1,0,0,0,3,0,0,0,1,2,0,0,0,0,0,2,2,1,0,0,4,0,0,0,0,5,0,0,0,0,0,2,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0', 'edge=1,4,1,88,128,22,8,39,25,142,230,226,31,60,64,255,252,12,76', 'texture=1,15,32,31,28,19,16,12,98']}
++++++++++++++++++
/Users/test/Transcend-8GB-Class-10-SDHC-Flash-Memory-Card.jpg
fcolor=2,4,14,5,0,0,0,0,0,0,0,0,0,0,12,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,6,0,0,0,0,1,0,0,0,0,0,0,0,0,0,20,9,0,0,0,2,2,0,0,0,0,0,0,0,0,0,13,6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,10,8,0,0,0,1,2,0,0,0,0,0,0,0,0,0,17,17,0,0,0,3,6,0,0,0,0,0,0,0,0,0,7,5,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,3,0,0,0,1,1,0,0,0,0,0,0,0,0,0,6,6,0,0,0,2,3
fcolor=2,4,14,5,0,0,0,0,0,0,0,0,0,0,12,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,6,0,0,0,0,1,0,0,0,0,0,0,0,0,0,20,9,0,0,0,2,2,0,0,0,0,0,0,0,0,0,13,6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,10,8,0,0,0,1,2,0,0,0,0,0,0,0,0,0,17,17,0,0,0,3,6,0,0,0,0,0,0,0,0,0,7,5,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,3,0,0,0,1,1,0,0,0,0,0,0,0,0,0,6,6,0,0,0,2,3
fcolor=2,74,6,20,30,1,2,0,1,0,0,0,1,3,2,0,0,0,0,0,1,1,1,0,0,2,0,0,0,2,2,0,0,0,0,0,2,2,1,0,0,5,0,0,0,1,4,0,0,0,0,0,2,2,1,0,0,1,0,0,0,3,1,0,0,0,0,0,1,1,0,0,0,3,0,0,0,1,2,0,0,0,0,0,2,2,1,0,0,4,0,0,0,0,5,0,0,0,0,0,2,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0
fcolor=2,4,14,5,0,0,0,0,0,0,0,0,0,0,12,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,6,0,0,0,0,1,0,0,0,0,0,0,0,0,0,20,9,0,0,0,2,2,0,0,0,0,0,0,0,0,0,13,6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,10,8,0,0,0,1,2,0,0,0,0,0,0,0,0,0,17,17,0,0,0,3,6,0,0,0,0,0,0,0,0,0,7,5,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,3,0,0,0,1,1,0,0,0,0,0,0,0,0,0,6,6,0,0,0,2,3
edge=1,4,1,88,128,22,8,39,25,142,230,226,31,60,64,255,252,12,76
fcolor=2,4,14,5,0,0,0,0,0,0,0,0,0,0,12,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,6,0,0,0,0,1,0,0,0,0,0,0,0,0,0,20,9,0,0,0,2,2,0,0,0,0,0,0,0,0,0,13,6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,10,8,0,0,0,1,2,0,0,0,0,0,0,0,0,0,17,17,0,0,0,3,6,0,0,0,0,0,0,0,0,0,7,5,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,3,0,0,0,1,1,0,0,0,0,0,0,0,0,0,6,6,0,0,0,2,3
texture=1,15,32,31,28,19,16,12,98
edge=1,252,1,32,124,194,63,252,67,15,240,1,7,244,66,47,0,192,63
edge=1,252,1,32,124,194,63,252,67,15,240,1,7,244,66,47,0,192,63
fcolor=2,74,6,20,30,1,2,0,1,0,0,0,1,3,2,0,0,0,0,0,1,1,1,0,0,2,0,0,0,2,2,0,0,0,0,0,2,2,1,0,0,5,0,0,0,1,4,0,0,0,0,0,2,2,1,0,0,1,0,0,0,3,1,0,0,0,0,0,1,1,0,0,0,3,0,0,0,1,2,0,0,0,0,0,2,2,1,0,0,4,0,0,0,0,5,0,0,0,0,0,2,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0
edge=1,252,1,32,124,194,63,252,67,15,240,1,7,244,66,47,0,192,63
edge=1,4,1,88,128,22,8,39,25,142,230,226,31,60,64,255,252,12,76
edge=1,252,1,32,124,194,63,252,67,15,240,1,7,244,66,47,0,192,63
texture=1,15,32,31,28,19,16,12,98
texture=1,78,27,37,13,6,6,7,78
texture=1,78,27,37,13,6,6,7,78
fcolor=2,74,6,20,30,1,2,0,1,0,0,0,1,3,2,0,0,0,0,0,1,1,1,0,0,2,0,0,0,2,2,0,0,0,0,0,2,2,1,0,0,5,0,0,0,1,4,0,0,0,0,0,2,2,1,0,0,1,0,0,0,3,1,0,0,0,0,0,1,1,0,0,0,3,0,0,0,1,2,0,0,0,0,0,2,2,1,0,0,4,0,0,0,0,5,0,0,0,0,0,2,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0
texture=1,78,27,37,13,6,6,7,78
edge=1,4,1,88,128,22,8,39,25,142,230,226,31,60,64,255,252,12,76
texture=1,78,27,37,13,6,6,7,78
texture=1,15,32,31,28,19,16,12,98
显然,你可以看到我正在吐出许多重复相同值的方法
这些是我正在处理的实际词典:
词典1:
{'/Users/test/Transcend-8GB-Class-10-SDHC-Flash-Memory-Card.jpg': ['fcolor=2,4,14,5,0,0,0,0,0,0,0,0,0,0,12,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,6,0,0,0,0,1,0,0,0,0,0,0,0,0,0,20,9,0,0,0,2,2,0,0,0,0,0,0,0,0,0,13,6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,10,8,0,0,0,1,2,0,0,0,0,0,0,0,0,0,17,17,0,0,0,3,6,0,0,0,0,0,0,0,0,0,7,5,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,3,0,0,0,1,1,0,0,0,0,0,0,0,0,0,6,6,0,0,0,2,3', 'edge=1,252,1,32,124,194,63,252,67,15,240,1,7,244,66,47,0,192,63', 'texture=1,78,27,37,13,6,6,7,78']}
词典2:
{'/Users/test/kodax-camera-M531.jpg': ['fcolor=2,74,6,20,30,1,2,0,1,0,0,0,1,3,2,0,0,0,0,0,1,1,1,0,0,2,0,0,0,2,2,0,0,0,0,0,2,2,1,0,0,5,0,0,0,1,4,0,0,0,0,0,2,2,1,0,0,1,0,0,0,3,1,0,0,0,0,0,1,1,0,0,0,3,0,0,0,1,2,0,0,0,0,0,2,2,1,0,0,4,0,0,0,0,5,0,0,0,0,0,2,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0', 'edge=1,4,1,88,128,22,8,39,25,142,230,226,31,60,64,255,252,12,76', 'texture=1,15,32,31,28,19,16,12,98']}
我有lamba功能
cosinLamba = lambda a, b : round(NP.inner(a, b)/(LA.norm(a)*LA.norm(b)), 3)
我想迭代字典1和字典2并获取dictionary1的fcolor值 'fcolor=2,4,14,5,0,0,0,0,0,0,0,0,0,0,12,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,6,0,0,0,0,1,0,0,0,0,0,0,0,0,0,20,9,0,0,0,2,2,0,0,0,0,0,0,0,0,0,13,6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,10,8,0,0,0,1,2,0,0,0,0,0,0,0,0,0,17,17,0,0,0,3,6,0,0,0,0,0,0,0,0,0,7,5,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,3,0,0,0,1,1,0,0,0,0,0,0,0,0,0,6,6,0,0,0,2,3'
和dictionary2的fcolor值
'fcolor=2,74,6,20,30,1,2,0,1,0,0,0,1,3,2,0,0,0,0,0,1,1,1,0,0,2,0,0,0,2,2,0,0,0,0,0,2,2,1,0,0,5,0,0,0,1,4,0,0,0,0,0,2,2,1,0,0,1,0,0,0,3,1,0,0,0,0,0,1,1,0,0,0,3,0,0,0,1,2,0,0,0,0,0,2,2,1,0,0,4,0,0,0,0,5,0,0,0,0,0,2,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0'
将它们发送到我的lamba函数cosinLamba(valu1, value2)
value1和值2是字符串,这就是为什么我将它们作为值保存在我的字典中。 我想为fcolor,纹理,边缘做我为每个字典中给定图片存储的所有向量。
答案 0 :(得分:2)
您可以先将代表更改为:
{'someFileName.jpg' : {'forecolor': [2,3,5,5,6],'edge': [2,4,5],'texture':[5,4,3]}}
或
{('someFileName.jpg', 'forecolor'): [2,3,5,5,6],
('someFileName.jpg', 'edge'): [2,4,5],
('someFileName.jpg', 'texture'):[5,4,3]}
例如,要获得第一种情况的相应列表:
from itertools import product
# pair info for each image with info of every image from another dictionary
for (fn1, d1), (fn2,d2) in product(dict1.iteritems(), dict2.iteritems()):
for property_, list_value in d1.iteritems():
compute_cosine_similarity(list_value, d2[property_])
将您的表示与字符串列表一起使用,如下所示:
from itertools import product
# pair info for each image with info of every image from another dictionary
for (fn1,lst1), (fn2,lst2) in product(dict1.iteritems(), dict2.iteritems()):
# assume all lists has the same order of elements
for string_value1, string_value2 in zip(lst1, lst2):
compute(string_value1, string_value2)
您不应将数字存储为ascii字符串列表。如果你需要节省内存,你可以使用numpy数组。 cosinLamba
已经接受了它们。
from collections import namedtuple
import numpy as np
Info = namedtuple('Info', 'forecolor edge texture')
dict1 = {'someFileName.jpg': Info(np.array([...], dtype=np.uint8),
np.array([...], dtype=np.uint8),
np.array([...], dtype=np.uint8))}
调用cosine_similarity()的代码与您的表示完全相同。
答案 1 :(得分:0)
我不熟悉您想要执行的cosign计算,但除此之外,如果我对您的问题的理解是正确的,那么以下代码应该有效:
for key1, vals1 in dict1.iteritems():
vals2 = dict2[key1]
for val1, val2 in zip(vals1, vals2):
# you now have the corresponding values for each image file
compute_cosign(val1, val2)