我有一个trie实现,我想打印我的trie,所以我可以看到它里面有什么。优先考虑深度优先遍历,所以这些词语实际上是有意义的。这是我的代码:
package trie;
public class Trie {
public TrieNode root;
public Trie(){
root = new TrieNode();
}
/*
public Trie(char c){
TrieNode t = new TrieNode(c);
root = t;
}*/
public void insert(String s, int phraseNb){
int i = 0;
TrieNode node = root;
char[] string = s.toCharArray();
TrieNode child = null;
while(i < string.length){
child = node.getChild(string[i]);
if(child == null){
child = new TrieNode(string[i]);
node.addChild(child);
}
else{
node = child;
}
i++;
}
node.endOfWord();
node.setNb(phraseNb);
}
public int[] search(char[] c){
TrieNode node = root;
for(int i = 0; i < c.length-1; i++){
node = root;
int s = 0;
while(i+s < c.length){
TrieNode child = node.getChild(c[i + s]);
if(child == null){
break;
}
if(child.isWord()){
return new int[] {i, s+1, node.getNb()};
}
node = child;
s++;
}
}
return new int[] {-1, -1, -1};
}
public void print(){
}
}
package trie;
import java.io.*;
import java.util.*;
public class TrieNode {
private boolean endOfWord;
private int phraseNb;
private char letter;
private HashSet<TrieNode> children = new HashSet<TrieNode>();
public TrieNode(){}
public TrieNode(char letter){
this.letter = letter;
}
public boolean isWord(){
return endOfWord;
}
public void setNb(int nb){
phraseNb = nb;
}
public int getNb(){
return phraseNb;
}
public char getLetter(){
return letter;
}
public TrieNode getChild(char c){
for(TrieNode child: children){
if(c == child.getLetter()){
return child;
}
}
return null;
}
public Set<TrieNode> getChildren(){
return children;
}
public boolean addChild(TrieNode t){
return children.add(t);
}
public void endOfWord(){
endOfWord = true;
}
public void notEndOfWord(){
endOfWord = false;
}
}
只需要解释如何去做或者一些伪代码就是我需要的。谢谢你的时间。
答案 0 :(得分:1)
当我尝试在控制台上打印树时,我记得我的大学时代。 Trie在打印IMO方面是一样的...这就是我所做的,这也是我建议你做的: 拿一些纸,在那里画你的特里。 现在想想你想怎么打印trie。 我认为trie的组成就像N树(不是二元树,而是一棵有很多孩子的树)。除此之外,它的结构就像树一样。 所以你真的可以在这里应用深度优先方法。
让我们假设您要打印这样的trie(节点'a'是根):
一
b
e
f
g
d
这就像包含单词的特里: 广告 安倍晋三 ABF ABG
所以你从root开始,累积偏移量并递归遍历:
printTrie(Node node, int offset) {
print(node, offset)
// here you can play with the order of the children
for(Node child : node.getChildren()) {
printTrie(child, offset + 2)
}
}
使用以下命令开始递归:
printTrie(root, 0)
你将完成
我使用2作为常数来使用偏移变化系数,将其更改为3,4或其他任何内容,看看会发生什么。
希望这会有所帮助。 祝你好运!
答案 1 :(得分:1)
这是使用HashMap实现Trie的完整示例。
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.Map.Entry;
class TrieNode{
private char c;
private Map<Character,TrieNode> children = new HashMap<>();
private boolean isLeaf = false;
TrieNode(){
}
/**
* @param c the c to set
*/
public void setC(char c) {
this.c = c;
}
/**
* @return the children
*/
public Map<Character, TrieNode> getChildren() {
return children;
}
/**
* @return the isLeaf
*/
public boolean isLeaf() {
return isLeaf;
}
/**
* @return the c
*/
public char getC() {
return c;
}
/**
* @param isLeaf the isLeaf to set
*/
public void setLeaf(boolean isLeaf) {
this.isLeaf = isLeaf;
}
}
class Trie{
TrieNode rootNode;
public Trie(){
rootNode = new TrieNode();
}
public void insertWord(String word){
TrieNode current = rootNode;
for (int i = 0; i < word.length(); i++) {
char c = word.charAt(i);
Map<Character,TrieNode> children = current.getChildren();
if(children.containsKey(c)){
current = children.get(c);
}
else{
TrieNode trieNode = new TrieNode();
children.put(c, trieNode);
current = children.get(c);
}
}
current.setLeaf(true);
}
public boolean searchWord(String word){
TrieNode current = rootNode;
for (int i = 0; i < word.length(); i++) {
Map<Character,TrieNode> children = current.getChildren();
char c = word.charAt(i);
if(children.containsKey(c)){
current = children.get(c);
}
else{
return false;
}
}
if(current.isLeaf() && current!=null){
return true;
}
else{
return false;
}
}
public void print(TrieNode rootNode,int level, StringBuilder sequence) {
if(rootNode.isLeaf()){
sequence = sequence.insert(level, rootNode.getC());
System.out.println(sequence);
}
Map<Character, TrieNode> children = rootNode.getChildren();
Iterator<Character> iterator = children.keySet().iterator();
while (iterator.hasNext()) {
char character = iterator.next();
sequence = sequence.insert(level, character);
print(children.get(character), level+1, sequence);
sequence.deleteCharAt(level);
}
}
}
class TrieImplementation{
public static void main(String[] args) {
Trie trie = new Trie();
trie.insertWord("Done");
trie.insertWord("Dont");
trie.insertWord("Donor");
trie.insertWord("Sanjay");
trie.insertWord("Ravi");
trie.insertWord("RaviRaj");
TrieNode root = trie.rootNode;
trie.print(root,0,new StringBuilder(""));
System.out.println(trie.searchWord("Dont"));
System.out.println(trie.searchWord("Donor"));
System.out.println(trie.searchWord("Jay"));
System.out.println(trie.searchWord("Saviraj"));
System.out.println(trie.searchWord("RaviRaj"));
System.out.println(trie.searchWord("Aaviraj"));
}
}
答案 2 :(得分:0)
在处理像Trie这样的复合数据结构时,visitor设计模式通常很有用。它使开发人员能够将复合数据结构的遍历与每个节点上检索到的信息分离。
可以使用访客设计模式打印Trie。
答案 3 :(得分:0)
这可能会有所帮助。
public void printTrie(TrieNode node,String s) {
String strSoFar = s;
strSoFar += String.valueOf(node.c);
if(node.isLeaf)
{
System.out.println(strSoFar);
return;
}
else
{
Stack<TrieNode> stack = new Stack<TrieNode>();
Iterator<TrieNode> itr = node.children.values().iterator();
while(itr.hasNext())
{
stack.add(itr.next());
}
while(!stack.empty()){
TrieNode t = stack.pop();
printTrie(t,strSoFar);
}
}
}
尝试调用该函数,
trieObject.printTrie(trieObject.getRoot(), "");
答案 4 :(得分:0)
这是一个我刚刚聚集在一起的例子。不是打印的美女,只能打印Trie一次,但它完成了工作。希望能帮助到你。
import java.util.*;
public class Trie
{
static TrieNode root = new TrieNode();
static char endMarker = '?';
public static void main(String[] args)
{
System.out.println(checkPresentsAndAdd("test"));
System.out.println(checkPresentsAndAdd("taser"));
System.out.println(checkPresentsAndAdd("tester"));
System.out.println(checkPresentsAndAdd("tasters"));
System.out.println(checkPresentsAndAdd("test"));
System.out.println(checkPresentsAndAdd("tester"));
printTrie(root);
}
public static boolean checkPresentsAndAdd(String word)
{
TrieNode node = root;
for(int i = 0; i < word.length(); i++)
{
char c = word.charAt(i);
if(node.checkIfNeighbor(c))
{
node = node.getNeighbor(c);
}
else
{
node.addNeighbor(c);
node = node.getNeighbor(c);
}
}
boolean nord = false;
if(!node.checkIfNeighbor(endMarker))
{
nord = true;
node.addNeighbor(endMarker);
}
return nord;
}
public static void printTrie(TrieNode node)
{
if(node == null || node.visited)
return;
LinkedList<TrieNode> q = new LinkedList<TrieNode>();
System.out.println(node);
node.visited = true;
q.add(node);
while (!q.isEmpty())
{
TrieNode x = q.removeFirst();
for(Map.Entry<Character,TrieNode> i : x.neighbors.entrySet())
{
if(i.getValue().visited == false)
{
System.out.println(i);
i.getValue().visited = true;
q.add(i.getValue());
}
}
}
}
}
class TrieNode
{
Map<Character, TrieNode> neighbors = new HashMap<Character, TrieNode>();
boolean visited = false;
public TrieNode(){}
public boolean checkIfNeighbor(char c)
{
return neighbors.containsKey(c);
}
public TrieNode getNeighbor(char c)
{
if(checkIfNeighbor(c))
{
return neighbors.get(c);
}
return null;
}
public void addNeighbor(char c)
{
TrieNode node = new TrieNode();
neighbors.put(c, node);
}
public String toString()
{
StringBuilder sb = new StringBuilder();
sb.append("Node:[neighbors: ");
sb.append(neighbors);
sb.append("]\n");
return sb.toString();
}
}