张量的形状为torch.Size([3, 320, 480])
张量是
tensor([[[0.2980, 0.4353, 0.6431, ..., 0.2196, 0.2196, 0.2157],
[0.4235, 0.4275, 0.5569, ..., 0.2353, 0.2235, 0.2078],
[0.5608, 0.5961, 0.5882, ..., 0.2314, 0.2471, 0.2588],
...,
...,
[0.0588, 0.0471, 0.0784, ..., 0.0392, 0.0471, 0.0745],
[0.0275, 0.1020, 0.1882, ..., 0.0196, 0.0157, 0.0471],
[0.1569, 0.2353, 0.2471, ..., 0.0549, 0.0549, 0.0627]]])
我需要形状为320、480、3的东西
因此,张量应该看起来像这样
array([[[0.29803923, 0.22352941, 0.10980392],
[0.43529412, 0.34117648, 0.20784314],
[0.6431373 , 0.5254902 , 0.3764706 ],
...,
...,
[0.21960784, 0.13333334, 0.05490196],
[0.23529412, 0.14509805, 0.05490196],
[0.2627451 , 0.1764706 , 0.0627451 ]]], dtype=float32)
答案 0 :(得分:1)
首先使用.cpu()将设备更改为主机/ cpu(如果在cuda上),然后使用.detach()将其与计算图分离,然后使用.numpy()转换为numpy
t = torch.tensor(...).reshape(320, 480, 3)
numpy_array = t.cpu().detach().numpy()
答案 1 :(得分:0)
我为我找到了另一种解决方法
t = torch.tensor(...).permute(1, 2, 0).numpy()