我不知道下一步该怎么做,我尝试了很多次,但是我的老师要我制作10个模型。
import pandas as pd
from numpy import reshape
from sklearn import metrics
train = pd.read_csv('fashion_train.csv',header =None)
print(train.head())
label = train[0]
test = pd.read_csv('fashion_test.csv',header = None)
print(test.head())
labelT = test[0]
print(labelT)
X_train = train.iloc[:, 1:]
print(X_train)
y_train = train.iloc[:, 0]
print(y_train)
X_test = test.iloc[:, 1:]
y_test = test.iloc[:, 0]
from sklearn.linear_model import LogisticRegression
答案 0 :(得分:0)
好的,现在您需要做的是训练模型。因此,只需将以下行添加到您的代码中即可。
model = LogisticRegression()
model.fit(X_train, y_train)
prediction = model.predict(X_test)
现在您可以使用任何精度计算器。例如:
score = sklearn.metrics.classification_report(y_test, prediction)
print(score)
我也建议将导入更改为import sklearn