我有一个3列的DataFrame,如下所示:
+-------+--------------------+-------------+
| id | reports | hash |
+-------+--------------------+-------------+
|abc | [[1,2,3], [4,5,6]] | 9q5 |
|def | [[1,2,3], [4,5,6]] | 9q5 |
|ghi | [[1,2,3], [4,5,6]] | 9q5 |
|lmn | [[1,2,3], [4,5,6]] | abc |
|opq | [[1,2,3], [4,5,6]] | abc |
|rst | [[1,2,3], [4,5,6]] | abc |
+-------+--------------------+-------------+
现在我的问题是我需要限制每个散列的行数。
我当时以为我可以转换哈希,例如对于哈希中的每个值,9q5 in 9q5_1
用于前1k行,9q5_2
用于第二个1k,依此类推。
有一个类似的post,但是有所不同,DataFrame被拆分了,我想保留一个并更改键值。
关于如何实现这一目标的任何建议?谢谢
答案 0 :(得分:0)
我找到了解决方案。我使用Window函数为geohash列中的每个值创建一个具有递增索引的新列。然后,我应用一个udf函数,该函数根据原始的geohash和索引组成了我需要'geohash'_X的新哈希值。
partition_size_limit = 10
generate_indexed_geohash_udf = udf(lambda geohash, index: "{0}_{1}".format(geohash, int(index / partition_size_limit)))
window = Window.partitionBy(df_split['geohash']).orderBy(df_split['id'])
df_split.select('*', rank().over(window).alias('index')).withColumn("indexed_geohash", generate_indexed_geohash_udf('geohash', 'index'))
结果是:
+-------+--------------------+-------------+-------------+-----------------+
| id | reports | hash | index | indexed_geohash |
+-------+--------------------+-------------+-------------+-----------------+
|abc | [[1,2,3], [4,5,6]] | 9q5 | 1 | 9q5_0 |
|def | [[1,2,3], [4,5,6]] | 9q5 | 2 | 9q5_0 |
|ghi | [[1,2,3], [4,5,6]] | 9q5 | 3 | 9q5_0 |
|ghi | [[1,2,3], [4,5,6]] | 9q5 | 4 | 9q5_0 |
|ghi | [[1,2,3], [4,5,6]] | 9q5 | 5 | 9q5_0 |
|ghi | [[1,2,3], [4,5,6]] | 9q5 | 6 | 9q5_0 |
|ghi | [[1,2,3], [4,5,6]] | 9q5 | 7 | 9q5_0 |
|ghi | [[1,2,3], [4,5,6]] | 9q5 | 8 | 9q5_0 |
|ghi | [[1,2,3], [4,5,6]] | 9q5 | 9 | 9q5_0 |
|ghi | [[1,2,3], [4,5,6]] | 9q5 | 10 | 9q5_1 |
|ghi | [[1,2,3], [4,5,6]] | 9q5 | 11 | 9q5_1 |
|lmn | [[1,2,3], [4,5,6]] | abc | 1 | abc_0 |
|opq | [[1,2,3], [4,5,6]] | abc | 2 | abc_0 |
|rst | [[1,2,3], [4,5,6]] | abc | 3 | abc_0 |
+-------+--------------------+-------------+-------------+-----------------+
编辑:史蒂文的答案也很完美
partition_size_limit = 10
window = Window.partitionBy(df_split['geohash']).orderBy(df_split['id'])
df_split.select('*', rank().over(window).alias('index')).withColumn("indexed_geohash", F.concat_ws("_", F.col("geohash"), F.floor((F.col("index") / F.lit(partition_size_limit))).cast("String")))