我正在处理二进制图像分割问题。我已经成功编译并训练了模型。现在,我正在尝试实现两个目标:
据我了解, scikit-learn 软件包中的confusion_matrix
可以帮助解决总的混淆矩阵,但是我无法使其与自定义数据生成器一起使用。根据文档,这是confusion_matrix
的代码:
sklearn.metrics.confusion_matrix(y_true, y_pred, *, labels=None, sample_weight=None, normalize=None)
我不了解如何使用自定义数据生成器检索y_true
:
def learn_generator(templates_folder, masks_folder, image_width, batch_size, shuffle=True):
"""Generate individual batches form dataset"""
counter = 0
images_list = os.listdir(templates_folder)
if shuffle:
random.shuffle(images_list)
while True:
templates_pack = np.zeros((batch_size, image_width, image_width, 3)).astype('float')
masks_pack = np.zeros((batch_size, image_width, image_width, 1)).astype('float')
for i in range(counter, counter + batch_size):
template = cv2.imread(templates_folder + '/' + images_list[i]) / 255.
templates_pack[i - counter] = template
mask = cv2.imread(masks_folder + '/' + images_list[i], cv2.IMREAD_GRAYSCALE) / 255.
mask = np.expand_dims(mask, axis=2)
masks_pack[i - counter] = mask
counter += batch_size
if counter + batch_size >= len(images_list):
counter = 0
if shuffle:
random.shuffle(images_list)
yield templates_pack, masks_pack
test_templates_path = "E:/Project/images/all_templates/test"
test_masks_path = "E:/Project/images/all_masks/test"
TEST_SET_SIZE = len(os.listdir(test_templates_path))
IMAGE_WIDTH = 512
BATCH_SIZE = 4
TEST_STEPS = TEST_SET_SIZE / BATCH_SIZE
test_generator = learn_generator(test_templates_path, test_masks_path, IMAGE_WIDTH, batch_size=BATCH_SIZE)
Y_pred = model.predict_generator(test_generator, steps=TEST_STEPS)
y_pred = np.argmax(Y_pred, axis=1)
y_true = ???
对于单个混乱矩阵,根本没有想法... 任何帮助表示赞赏。
答案 0 :(得分:1)
我想对你来说太晚了,但也许这可以帮助其他人:
我确实通过使用混淆矩阵的定义,通过计算真阳性,真阴性,假阳性,假阴性来实现这一点。
此代码仅适用于二进制分段,假设“1”是“正”的输出,“0”是“负”的输出...
import seaborn as sns
FP = len(np.where(Y_pred - Y_val == -1)[0])
FN = len(np.where(Y_pred - Y_val == 1)[0])
TP = len(np.where(Y_pred + Y_val ==2)[0])
TN = len(np.where(Y_pred + Y_val == 0)[0])
cmat = [[TP, FN], [FP, TN]]
plt.figure(figsize = (6,6))
sns.heatmap(cmat/np.sum(cmat), cmap="Reds", annot=True, fmt = '.2%', square=1, linewidth=2.)
plt.xlabel("predictions")
plt.ylabel("real values")
plt.show()
答案 1 :(得分:0)
https://www.kite.com/blog/python/image-segmentation-tutorial/
我认为您可以从该网站更改两个类的代码,并将其应用于您的用例。
此外,我认为此答案确实提供了sklearn混淆矩阵方法Faster method of computing confusion matrix?
的实现