在pytorch中的另一个数据加载器中创建数据加载器是否会减慢速度(在元学习期间)?

时间:2020-07-03 22:56:42

标签: machine-learning deep-learning pytorch

我试图创建一个用于元学习的数据加载器,但发现我的代码非常慢,我不知道为什么。之所以这样做,是因为元学习中使用的是一组数据集(因此我需要它们的数据加载器)。

我想知道是否是因为我有一个整理函数生成数据加载程序。

这是整理函数,可生成数据加载器(并接收所有数据集):

class GetMetaBatch_NK_WayClassTask:

    def __init__(self, meta_batch_size, n_classes, k_shot, k_eval, shuffle=True, pin_memory=True, original=False, flatten=True):
        self.meta_batch_size = meta_batch_size
        self.n_classes = n_classes
        self.k_shot = k_shot
        self.k_eval = k_eval
        self.shuffle = shuffle
        self.pin_memory = pin_memory
        self.original = original
        self.flatten = flatten

    def __call__(self, all_datasets, verbose=False):
        NUM_WORKERS = 0 # no need to change
        get_data_loader = lambda data_set: iter(data.DataLoader(data_set, batch_size=self.k_shot+self.k_eval, shuffle=self.shuffle, num_workers=NUM_WORKERS, pin_memory=self.pin_memory))
        #assert( len(meta_set) == self.meta_batch_size*self.n_classes )
        # generate M N,K-way classification tasks
        batch_spt_x, batch_spt_y, batch_qry_x, batch_qry_y = [], [], [], []
        for m in range(self.meta_batch_size):
            n_indices = random.sample(range(0,len(all_datasets)), self.n_classes)
            # create N-way, K-shot task instance
            spt_x, spt_y, qry_x, qry_y = [], [], [], []
            for i,n in enumerate(n_indices):
                data_set_n = all_datasets[n]
                dataset_loader_n = get_data_loader(data_set_n) # get data set for class n
                data_x_n, data_y_n = next(dataset_loader_n) # get all data from current class 
                spt_x_n, qry_x_n = data_x_n[:self.k_shot], data_x_n[self.k_shot:] # [K, CHW], [K_eval, CHW]
                # get labels
                if self.original:
                    #spt_y_n = torch.tensor([n]).repeat(self.k_shot)
                    #qry_y_n = torch.tensor([n]).repeat(self.k_eval)
                    spt_y_n, qry_y_n = data_y_n[:self.k_shot], data_y_n[self.k_shot:]
                else:
                    spt_y_n = torch.tensor([i]).repeat(self.k_shot)
                    qry_y_n = torch.tensor([i]).repeat(self.k_eval)
                # form K-shot task for current label n
                spt_x.append(spt_x_n); spt_y.append(spt_y_n) # array length N with tensors size [K, CHW]
                qry_x.append(qry_x_n); qry_y.append(qry_y_n) # array length N with tensors size [K, CHW]
            # form N-way, K-shot task with tensor size [N,W, CHW]
            spt_x, spt_y, qry_x, qry_y = torch.stack(spt_x), torch.stack(spt_y), torch.stack(qry_x), torch.stack(qry_y)
            # form N-way, K-shot task with tensor size [N*W, CHW]
            if verbose:
                print(f'spt_x.size() = {spt_x.size()}')
                print(f'spt_y.size() = {spt_y.size()}')
                print(f'qry_x.size() = {qry_x.size()}')
                print(f'spt_y.size() = {qry_y.size()}')
                print()
            if self.flatten:
                CHW = qry_x.shape[-3:]
                spt_x, spt_y, qry_x, qry_y = spt_x.reshape(-1, *CHW), spt_y.reshape(-1), qry_x.reshape(-1, *CHW), qry_y.reshape(-1)
            ## append to N-way, K-shot task to meta-batch of tasks
            batch_spt_x.append(spt_x); batch_spt_y.append(spt_y)
            batch_qry_x.append(qry_x); batch_qry_y.append(qry_y)
        ## get a meta-set of M N-way, K-way classification tasks [M,K*N,C,H,W]
        batch_spt_x, batch_spt_y, batch_qry_x, batch_qry_y = torch.stack(batch_spt_x), torch.stack(batch_spt_y), torch.stack(batch_qry_x), torch.stack(batch_qry_y)
        return batch_spt_x, batch_spt_y, batch_qry_x, batch_qry_y

传递到此处的另一个数据加载器:

def get_meta_set_loader(meta_set, meta_batch_size, n_episodes, n_classes, k_shot, k_eval, pin_mem=True, n_workers=4):
    """[summary]

    Args:
        meta_set ([type]): the meta-set
        meta_batch_size ([type]): [description]
        n_classes ([type]): [description]
        pin_mem (bool, optional): [Since returning cuda tensors in dataloaders is not recommended due to cuda subties with multithreading, instead set pin=True for fast transfering of the data to cuda]. Defaults to True.
        n_workers (int, optional): [description]. Defaults to 4.

    Returns:
        [type]: [description]
    """
    if n_classes > len(meta_set):
        raise ValueError(f'You really want a N larger than the # classes in the meta-set? n_classes, len(meta_set = {n_classes, len(meta_set)}')
    collator_nk_way = GetMetaBatch_NK_WayClassTask(meta_batch_size, n_classes, k_shot, k_eval)
    episodic_sampler = EpisodicSampler(total_classes=len(meta_set), n_episodes=n_episodes)
    episodic_metaloader = data.DataLoader(
        meta_set, 
        num_workers=n_workers, 
        pin_memory=pin_mem, # to make moving to cuda more efficient
        collate_fn=collator_nk_way, # does the collecting to return M N,K-shot task
        batch_sampler=episodic_sampler # for keeping track of the episode
        )
    return episodic_metaloader

(将生成一个较小的示例)


相关:

1 个答案:

答案 0 :(得分:1)

从概念上讲,即使一个在另一个内部,pytorch数据加载器也应该没有问题。调试问题的一种方法是使用line_profiler软件包来更好地了解减速的发生位置。

如果使用line_profiler后仍无法解决问题,请使用事件探查器的输出更新您的问题,以帮助我们了解可能出了问题。允许探查器运行一段时间,以收集有关数据加载器执行情况的足够统计信息。 @profile装饰器也适用于函数和类函数,因此应适用于数据加载器函数。