我尝试在RGB图像上训练keras VGG-19模型,当尝试前馈时会出现此错误:
ValueError: Input 0 of layer block1_conv1 is incompatible with the layer: expected ndim=4, found ndim=3. Full shape received: [224, 224, 3]
将图像重塑为(224、224、3、1)以包括批处理暗淡,然后如代码所示前馈时,会发生此错误:
ValueError: Dimensions must be equal, but are 1 and 3 for '{{node BiasAdd}} = BiasAdd[T=DT_FLOAT, data_format="NHWC"](strided_slice, Const)' with input shapes: [64,224,224,1], [3]
for idx in tqdm(range(train_data.get_ds_size() // batch_size)):
# train step
batch = train_data.get_train_batch()
for sample, label in zip(batch[0], batch[1]):
sample = tf.reshape(sample, [*sample.shape, 1])
label = tf.reshape(label, [*label.shape, 1])
train_step(idx, sample, label)
vgg
初始化为:
vgg = tf.keras.applications.VGG19(
include_top=True,
weights=None,
input_tensor=None,
input_shape=[224, 224, 3],
pooling=None,
classes=1000,
classifier_activation="softmax"
)
培训功能:
@tf.function
def train_step(idx, sample, label):
with tf.GradientTape() as tape:
# preprocess for vgg-19
sample = tf.image.resize(sample, (224, 224))
sample = tf.keras.applications.vgg19.preprocess_input(sample * 255)
predictions = vgg(sample, training=True)
# mean squared error in prediction
loss = tf.keras.losses.MSE(label, predictions)
# apply gradients
gradients = tape.gradient(loss, vgg.trainable_variables)
optimizer.apply_gradients(zip(gradients, vgg.trainable_variables))
# update metrics
train_loss(loss)
train_accuracy(vgg, predictions)
我想知道如何格式化输入,以便keras VGG-19实现能够接受它?
答案 0 :(得分:1)
您将必须解开一维以将形状变成[1, 224, 224, 3'
:
for idx in tqdm(range(train_data.get_ds_size() // batch_size)):
# train step
batch = train_data.get_train_batch()
for sample, label in zip(batch[0], batch[1]):
sample = tf.reshape(sample, [1, *sample.shape]) # added the 1 here
label = tf.reshape(label, [*label.shape, 1])
train_step(idx, sample, label)
答案 1 :(得分:0)
您为图像批次使用了错误的尺寸,“将图像重塑为(224,224,3,1)以包括批次暗淡时”-这应该是(x,224,224,3),其中{{1 }}是批次中的图像数。