我正在使用以下教程来开发执行前馈和背景操作的基本神经网络。教程的链接在这里:Python Neural Network Tutorial
import numpy as np
def sigmoid(x):
return 1.0/(1+ np.exp(-x))
def sigmoid_derivative(x):
return x * (1.0 - x)
class NeuralNetwork:
def __init__(self, x, y):
self.input = x
self.weights1 = np.random.rand(self.input.shape[1],4)
self.weights2 = np.random.rand(4,1)
self.y = y
self.output = np.zeros(self.y.shape)
def feedforward(self):
self.layer1 = sigmoid(np.dot(self.input, self.weights1))
self.output = sigmoid(np.dot(self.layer1, self.weights2))
def backprop(self):
# application of the chain rule to find derivative of the loss function with respect to weights2 and weights1
d_weights2 = np.dot(self.layer1.T, (2*(self.y - self.output) * sigmoid_derivative(self.output)))
d_weights1 = np.dot(self.input.T, (np.dot(2*(self.y - self.output) * sigmoid_derivative(self.output), self.weights2.T) * sigmoid_derivative(self.layer1)))
# update the weights with the derivative (slope) of the loss function
self.weights1 += d_weights1
self.weights2 += d_weights2
if __name__ == "__main__":
X = np.array([[0,0,1],
[0,1,1],
[1,0,1],
[1,1,1]])
y = np.array([[0],[1],[1],[0]])
nn = NeuralNetwork(X,y)
for i in range(1500):
nn.feedforward()
nn.backprop()
print(nn.output)
我想做的是更改数据集,如果预测数字为偶数,则返回1,如果奇数为奇数,则返回0。因此,我进行了以下更改:
if __name__ == "__main__":
X = np.array([[2,4,6,8,10],
[1,3,5,7,9],
[11,13,15,17,19],
[22,24,26,28,30]])
y = np.array([[1],[0],[0],[1]])
nn = NeuralNetwork(X,y)
The output I get is :
[[0.50000001]
[0.50000002]
[0.50000001]
[0.50000001]]
我在做什么错了?
答案 0 :(得分:1)
这里基本上有两个问题:
您的sigmoid_derivative表达式错误,应该是:
返回Sigmoid(x)*(((1.0-Sigmoid(x)))
如果查看S型函数图或网络权重,则会发现由于输入量大,网络已饱和。通过执行类似X = X%5的操作,您可以获得所需的训练结果,这是我的数据结果:
[[9.99626174e-01] [3.55126310e-04] [3.55126310e-04] [9.99626174e-01]]
答案 1 :(得分:0)
只需添加X = X/30
并训练网络10倍以上。这对我来说是收敛的。将X
除以30,以使每个输入都介于0和1之间。由于它是一个更复杂的数据集,因此训练时间更长。
您的导数很好,因为使用导数功能时,其输入已经为sigmoid(x)
。因此x*(1-x)
是 sigmoid(x)*(1-sigmoid(x))