异步返回多个值

时间:2020-02-24 10:44:43

标签: c# async-await task-parallel-library

我需要计算这两个独立的任务。以前我是这样依次进行的:

string firstHash = CalculateMD5Hash("MyName");
string secondHash = CalculateMD5Hash("NoName");

方法calculateMD5Hash看起来像。它用于为最大16GB的文件计算MD5哈希值:

private string CalculateMD5(string filename)
{
    using (var md5 = MD5.Create())
    {
        using (var stream = File.OpenRead(filename))
        {
            var hash = md5.ComputeHash(stream);
            return BitConverter.ToString(hash).Replace("-", string.Empty).ToLowerInvariant();
        }
    }
}

但是由于这2个CalculateMD5Hash方法可以并行运行,所以我尝试这样做:

Task<string> sequenceFileMd5Task = CalculateMD5("MyName");
Task<string> targetFileMD5task = CalculateMD5("NoName");
string firstHash = await sequenceFileMd5Task;
string secondHash = await targetFileMD5task;

我的CalculateMD5方法如下:

private async Task<string> CalculateMD5(string filename)
{
    using (var md5 = MD5.Create())
    {
        using (var stream = File.OpenRead(filename))
        {
            var hash = md5.ComputeHash(stream);
            return BitConverter.ToString(hash).Replace("-", string.Empty).ToLowerInvariant();
        }
    }
}

我希望代码可以异步工作,但可以同步工作。

3 个答案:

答案 0 :(得分:3)

这可能是I / O受限的,因此并行化它可能不会使事情加速很多(甚至可能使事情减速)。

话虽如此,代码的问题在于您没有创建任何新任务来在后台运行代码(仅指定async不会创建任何线程)。

最简单的解决方案不是尝试“强制”使用异步,而是通过PLinq利用AsParallel

List<string> files = new List<string>()
{
    "MyName",
    "NoName"
};

var results = files.AsParallel().Select(CalculateMD5).ToList();

如果要限制用于此目的的线程数,可以按照以下示例使用WithDegreeOfParallelism(),它将并行线程数限制为2:

var results = files.AsParallel().WithDegreeOfParallelism(2).Select(CalculateMD5).ToList();

但是请注意,如果有MD5.COmputeHashAsync()之类的东西,您肯定希望将其与async/awaitTask.WhenAll()一起使用-但这种东西不存在。 / p>

答案 1 :(得分:2)

您可以将函数主体更改为任务,然后等待结果。

private async Task<string> CalculateMD5(string filename)
{
    return await Task.Run(() =>
    {
        using (var md5 = MD5.Create())
        {
            using (var stream = File.OpenRead(filename))
            {
                var hash = md5.ComputeHash(stream);
                return BitConverter.ToString(hash).Replace("-", string.Empty).ToLowerInvariant();
            }
        }
    });
}

答案 2 :(得分:2)

加快速度的一种方法是使用双缓冲,这样一个线程可以从文件读入一个缓冲区,而正在为另一个缓冲区计算MD5。

这使您可以将I / O与计算重叠。

执行此操作的最佳方法是执行一个任务,该任务负责计算所有数据块的Md5,但是由于那样会使代码复杂得多(并且不太可能产生更好的结果)我将为每个块创建一个新任务。

代码如下:

public static async Task<byte[]> ComputeMd5Async(string filename)
{
    using (var md5  = MD5.Create())
    using (var file = new FileStream(filename, FileMode.Open, FileAccess.Read, FileShare.Read, 16384, FileOptions.SequentialScan | FileOptions.Asynchronous))
    {
        const int BUFFER_SIZE = 16 * 1024 * 1024; // Adjust buffer size to taste.

        byte[] buffer1 = new byte[BUFFER_SIZE];
        byte[] buffer2 = new byte[BUFFER_SIZE];
        byte[] buffer  = buffer1; // Double-buffered, so use 'buffer' to switch between buffers.

        var task = Task.CompletedTask;

        while (true)
        {
            buffer = (buffer == buffer1) ? buffer2 : buffer1; // Swap buffers for double-buffering.
            int n = await file.ReadAsync(buffer, 0, buffer.Length);

            await task;
            task.Dispose();

            if (n == 0)
                break;

            var block = buffer;
            task = Task.Run(() => md5.TransformBlock(block, 0, n, null, 0));
        }

        md5.TransformFinalBlock(buffer, 0, 0);

        return md5.Hash;
    }
}

这是一个可编译的测试应用程序:

using System;
using System.Diagnostics;
using System.IO;
using System.Security.Cryptography;
using System.Threading.Tasks;

namespace Demo
{
    class Program
    {
        static async Task Main()
        {
            string file = @"C:\ISO\063-2495-00-Rev 1.iso";

            Stopwatch sw = new Stopwatch();

            for (int i = 0; i < 4; ++i) // Try several times.
            {
                sw.Restart();

                var hash = await ComputeMd5Async(file);

                Console.WriteLine("ComputeMd5Async() Took " + sw.Elapsed);
                Console.WriteLine(string.Join(", ", hash));
                Console.WriteLine();

                sw.Restart();

                hash = ComputeMd5(file);

                Console.WriteLine("ComputeMd5() Took " + sw.Elapsed);
                Console.WriteLine(string.Join(", ", hash));
                Console.WriteLine();
            }
        }

        public static byte[] ComputeMd5(string filename)
        {
            using var md5    = MD5.Create();
            using var stream = File.OpenRead(filename);

            md5.ComputeHash(stream);

            return md5.Hash;
        }

        public static async Task<byte[]> ComputeMd5Async(string filename)
        {
            using (var md5  = MD5.Create())
            using (var file = new FileStream(filename, FileMode.Open, FileAccess.Read, FileShare.Read, 16384, FileOptions.SequentialScan | FileOptions.Asynchronous))
            {
                const int BUFFER_SIZE = 16 * 1024 * 1024; // Adjust buffer size to taste.

                byte[] buffer1 = new byte[BUFFER_SIZE];
                byte[] buffer2 = new byte[BUFFER_SIZE];
                byte[] buffer  = buffer1; // Double-buffered, so use 'buffer' to switch between buffers.

                var task = Task.CompletedTask;

                while (true)
                {
                    buffer = (buffer == buffer1) ? buffer2 : buffer1; // Swap buffers for double-buffering.
                    int n = await file.ReadAsync(buffer, 0, buffer.Length);

                    await task;
                    task.Dispose();

                    if (n == 0)
                        break;

                    var block = buffer;
                    task = Task.Run(() => md5.TransformBlock(block, 0, n, null, 0));
                }

                md5.TransformFinalBlock(buffer, 0, 0);

                return md5.Hash;
            }
        }
    }
}

我得到的文件大小约为2.5GB的结果:

ComputeMd5Async() Took 00:00:04.8066365
49, 54, 154, 19, 115, 198, 28, 163, 5, 182, 183, 91, 2, 5, 241, 253

ComputeMd5() Took 00:00:06.9654982
49, 54, 154, 19, 115, 198, 28, 163, 5, 182, 183, 91, 2, 5, 241, 253

ComputeMd5Async() Took 00:00:04.7018911
49, 54, 154, 19, 115, 198, 28, 163, 5, 182, 183, 91, 2, 5, 241, 253

ComputeMd5() Took 00:00:07.3552470
49, 54, 154, 19, 115, 198, 28, 163, 5, 182, 183, 91, 2, 5, 241, 253

ComputeMd5Async() Took 00:00:04.6536709
49, 54, 154, 19, 115, 198, 28, 163, 5, 182, 183, 91, 2, 5, 241, 253

ComputeMd5() Took 00:00:06.9807878
49, 54, 154, 19, 115, 198, 28, 163, 5, 182, 183, 91, 2, 5, 241, 253

ComputeMd5Async() Took 00:00:04.7271215
49, 54, 154, 19, 115, 198, 28, 163, 5, 182, 183, 91, 2, 5, 241, 253

ComputeMd5() Took 00:00:07.4089941
49, 54, 154, 19, 115, 198, 28, 163, 5, 182, 183, 91, 2, 5, 241, 253

因此异步双缓冲版本的运行速度提高了约50%。

也许有更快的方法,但这是一个相当简单的方法。