我有以下数据框:
这是我的代码:
movies_taxes['Total Taxes'] = movies_taxes.apply(lambda x:(0.2)* x['US Gross'] + (0.18) * x['Worldwide Gross'], axis=1)
movies_taxes
答案 0 :(得分:0)
简单的例子:
import pandas as pd
df = pd.DataFrame({'player': ['C','B','A'], 'data': [1,2,3]})
df = df.sort_values(by ='player')
输出:
发件人:
player data
0 C 1
1 B 2
2 A 3
收件人:
player data
2 A 3
1 B 2
0 C 1
答案 1 :(得分:0)
另一个例子:
df = pd.DataFrame({
'student': [
'monica', 'nathalia', 'anastasia', 'marina', 'ema'
],
'grade' : ['excellent', 'excellent', 'good', 'very good', 'good'
]
})
print (df)
student grade
0 monica excellent
1 nathalia excellent
2 anastasia good
3 marina very good
4 ema good
熊猫前0.17:
df.sort('student')
df.sort('student', ascending=False)
熊猫0.17+(如其他答案所述):
df.sort_values('student')
df.sort_values('student', ascending=False)
答案 2 :(得分:0)
这应该做到:
>>> import pandas as pd
>>> s = pd.Series(['banana', 'apple', 'friends', '3 dog and cat', '10 old man'])
>>> import numpy as np
# We want to know which rows start with a number as well as those that don't
>>> mask = np.array([True if not any(x.startswith(str(n)) for n in range(9)) else False for x in s])
>>> s[mask]
0 banana
1 apple
2 friends
dtype: object
# Stack the sorted, non-starting-with-a-number array and the sorted, starting-with-a-number array
>>> pd.concat((s[mask].sort_values(), s[~mask].sort_values(ascending=False)))
1 apple
0 banana
2 friends
3 3 dog and cat
4 10 old man