将一列转换为特定列数

时间:2020-01-06 15:55:04

标签: python numpy bigdata

我正在尝试根据其值将range(0,5)中具有值的一列数据转换为6列。 例如,如果其值为0,则这六个中的第一列变为一个,另一列变为0,依此类推。但是由于目标的形状为(1034892,1),因此需要花费很多时间,甚至崩溃。该代码可处理500000个数据,但对于此数据量无效。

有什么方法可以使如此大量的数据成为可能?

def convert_to_num_class(target):
    for i, value in enumerate(target):
        if i ==0:
            y_new =np.array( np.eye(6)[int(value[0])])
        else:
            y_new = np.vstack((y_new, np.eye(6)[int(value[0])]))
    return(y_new)

3 个答案:

答案 0 :(得分:1)

使用熊猫get_dummies

>>> target = np.random.randint(6, size=(10, 1))  # the original target is of shape (1034892, 1)
>>> target = target.flatten()
array([0, 1, 0, 0, 4, 3, 1, 5, 4, 5])

>>> pd.get_dummies(target).to_numpy()
array([[1, 0, 0, 0, 0],
       [0, 1, 0, 0, 0],
       [1, 0, 0, 0, 0],
       [1, 0, 0, 0, 0],
       [0, 0, 0, 1, 0],
       [0, 0, 1, 0, 0],
       [0, 1, 0, 0, 0],
       [0, 0, 0, 0, 1],
       [0, 0, 0, 1, 0],
       [0, 0, 0, 0, 1]])

如果目标没有您想要的范围内的所有值(如上例中target的值不为2),则缺少该值的列。一种解决方法如下:

>>> target = pd.Categorical(target, categories=np.arange(6))

>>> pd.get_dummies(target).to_numpy()
array([[1, 0, 0, 0, 0, 0],
       [0, 1, 0, 0, 0, 0],
       [1, 0, 0, 0, 0, 0],
       [1, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 1, 0],
       [0, 0, 0, 1, 0, 0],
       [0, 1, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 1],
       [0, 0, 0, 0, 1, 0],
       [0, 0, 0, 0, 0, 1]])

即使您拥有target大小的(1034892, 1),它也非常快。

答案 1 :(得分:0)

我也通过使用keras.utils.np_utils的to_categorical解决了该问题,并且只需要一秒钟的时间即可处理此数据:

from keras.utils.np_utils import to_categorical
def convert_to_num_class(target):
target = target.astype(np.int)
return(to_categorical(target, len(np.unique(target))))

答案 2 :(得分:0)

无需诉诸pandaskeras,只需使用元组建立索引:

import numpy as np

categories = 6
N = 10
target = np.random.randint(categories, size=(N,1)) # this should be your data

y = np.zeros((N, categories), dtype=np.uint8)
mask = (np.arange(N), target.flatten())
y[mask] = 1

性能检查:

def one_hot(target, categories=None): 
    target = target.flatten() 
    N = target.size 
    if categories is None:
        categories = target.max() - target.min() + 1 
    y = np.zeros((N, categories), dtype=np.uint8) 
    mask = (np.arange(N), target) 
    y[mask] = 1 
    return y 

N = 1034892
cats = 6
r = np.random.randint(cats, size=(N))

%timeit one_hot(r)
# 9.63 ms ± 187 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

import pandas as pd
%timeit pd.get_dummies(r).to_numpy()
# 18.2 ms ± 183 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)