datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180)
zoom_range = 0.1, # Randomly zoom image
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=False, # randomly flip images
vertical_flip=False) # randomly flip images
datagen.fit(X_train)
history = model.fit_generator(datagen.flow(X_train,Y_train,batch_size=batch_size,),
epochs=epochs,validation_data=(X_val,Y_val),
verbose=2,steps_per_epoch=X_train.shape[0] // batch_size,
callbacks= [learning_rate_reduction])
内部错误:Blas GEMM启动失败:a.shape =(86,3136),b.shape =(3136,256),m = 86,n = 256,k = 3136 [[node density_1 / MatMul(在c:\ users \ shahj \ appdata \ local \ programs \ python \ python35 \ lib \ site-packages \ tensorflow_core \ python \ framework \ ops.py:1751定义)]] [操作:__ inference_keras_scratch_graph_1528 ]
函数调用堆栈:
keras_scratch_graph
答案 0 :(得分:0)
cuda版本-> '10 .0'cudnn版本->'7.6.4'
tensorflow gpu版本->'2.0.0'keras gpu版本->'2.2.4'