假设X,Y = load_mnist()
,其中X和Y是包含整个mnist的张量。现在,我希望使用较小比例的数据来使我的代码运行更快,但是我需要将所有10个类都保持在那里,并且还要保持平衡。有没有简单的方法可以做到这一点?
答案 0 :(得分:1)
scikit-learn的train_test_split
用于将数据分为训练和测试类,但是您可以使用stratified
参数使用它来创建数据集的“平衡”子集。您可以只指定所需的训练/测试大小比例,从而获得较小的分层数据样本。就您而言:
from sklearn.model_selection import train_test_split
X_1, X_2, Y_1, Y_2 = train_test_split(X, Y, stratify=Y, test_size=0.5)
答案 1 :(得分:0)
如果您希望通过更多控制来做到这一点,可以使用numpy.random.randint
来生成子集大小的索引,并按照以下代码对原始数组进行采样:
# input data, assume that you've 10K samples
In [77]: total_samples = 10000
In [78]: X, Y = np.random.random_sample((total_samples, 784)), np.random.randint(0, 10, total_samples)
# out of these 10K, we want to pick only 500 samples as a subset
In [79]: subset_size = 500
# generate uniformly distributed indices, of size `subset_size`
In [80]: subset_idx = np.random.choice(total_samples, subset_size)
# simply index into the original arrays to obtain the subsets
In [81]: X_subset, Y_subset = X[subset_idx], Y[subset_idx]
In [82]: X_subset.shape, Y_subset.shape
Out[82]: ((500, 784), (500,))
答案 2 :(得分:0)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=Ture, test_size=0.33, random_state=42)
Stratify将确保课程的比例。
如果要执行K折,那么
from sklearn.model_selection import StratifiedShuffleSplit
sss = StratifiedShuffleSplit(n_splits=5, test_size=0.5, random_state=0)
for train_index, test_index in sss.split(X, y):
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]
检查here以获得sklearn文档。