我有以下数据集,该数据集包含按种族划分的19家公司的雇员人数。
build:xla --define with_xla_support=true
build --config=xla
build --action_env TF_NEED_OPENCL_SYCL="0"
build --action_env TF_NEED_ROCM="0"
build --action_env TF_NEED_CUDA="1"
build --action_env CUDA_TOOLKIT_PATH="c:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v9.2"
build --action_env TF_CUDA_VERSION="9.2"
build --action_env CUDNN_INSTALL_PATH="c:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v9.2"
build --action_env TF_CUDNN_VERSION="7"
build --action_env TF_CUDA_COMPUTE_CAPABILITIES="6.1"
build --action_env TF_CUDA_CLANG="0"
build --config=cuda
test --config=cuda
build:opt --copt=/arch:AVX
build:opt --define with_default_optimizations=true
build --config monolithic
build --copt=-w --host_copt=-w
build --verbose_failures
build --distinct_host_configuration=false
build --experimental_shortened_obj_file_path=true
build:v2 --define=tf_api_version=2
我正在尝试使用R中的pairwise.prop.table检验来测试公司种族的差异,以查看哪些差异显着。
当我跑步时: pairwise.prop.test(data [,c(“ White”,“ Black”,“ Hispanic”,“ Asian”,“ Unknown”)])
我收到“ pairwise.prop.test(smoke [,c(“ WHITE_COUNT”,“ BLACK_COUNT”,“ HISP_COUNT”,'x'必须有2列的错误“
还有其他可以使用的功能吗?我想比较每对公司的所有5个种族。
我将不胜感激。谢谢!
答案 0 :(得分:0)
正如成对文档所说,您的数据必须是
成功计数的向量或具有2列的矩阵 成功和失败的计数分别
如果将错误中提到的列数减少到两列,则会得到结果。
pairwise.prop.test(data[,c("White","Black")])
将导致:
Pairwise comparisons using Pairwise comparison of proportions
data: data[, c("White", "Black")]
A B C D E F G H I J K L M N
B 1.00000 - - - - - - - - - - - - -
C < 2e-16 3.2e-14 - - - - - - - - - - - -
D < 2e-16 6.1e-14 1.00000 - - - - - - - - - - -
E 1.00000 1.00000 < 2e-16 < 2e-16 - - - - - - - - - -
F < 2e-16 1.2e-10 1.00000 1.00000 2.8e-15 - - - - - - - - -
G < 2e-16 < 2e-16 1.00000 1.00000 < 2e-16 1.00000 - - - - - - - -
H 4.2e-05 0.04460 1.2e-07 5.2e-07 0.00159 7.6e-05 5.6e-10 - - - - - - -
I < 2e-16 < 2e-16 0.04410 8.2e-05 < 2e-16 0.00152 0.05631 < 2e-16 - - - - - -
J < 2e-16 < 2e-16 8.0e-14 < 2e-16 < 2e-16 < 2e-16 4.1e-14 < 2e-16 3.4e-05 - - - - -
K < 2e-16 6.1e-14 0.04410 0.00308 1.0e-15 0.00616 0.05631 3.6e-09 1.00000 1.00000 - - - -
L < 2e-16 < 2e-16 0.50026 0.00834 < 2e-16 0.04410 0.70329 3.3e-14 1.00000 2.0e-06 1.00000 - - -
M < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 - -
N 3.7e-07 6.8e-05 1.00000 1.00000 4.2e-06 1.00000 1.00000 0.12875 0.00597 5.4e-13 0.00571 0.05631 < 2e-16 -
O < 2e-16 < 2e-16 2.0e-13 < 2e-16 < 2e-16 2.5e-16 1.2e-13 < 2e-16 3.4e-05 1.00000 1.00000 2.1e-06 < 2e-16 7.2e-13
P < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16
Q < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16
R 8.3e-07 0.00079 0.03436 0.23508 2.0e-05 0.48752 0.00659 1.00000 2.4e-08 < 2e-16 1.4e-05 5.8e-06 < 2e-16 1.00000
S 2.1e-13 9.6e-08 < 2e-16 < 2e-16 3.2e-13 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 1.3e-05 < 2e-16
O P Q R
B - - - -
C - - - -
D - - - -
E - - - -
F - - - -
G - - - -
H - - - -
I - - - -
J - - - -
K - - - -
L - - - -
M - - - -
N - - - -
O - - - -
P < 2e-16 - - -
Q < 2e-16 < 2e-16 - -
R < 2e-16 < 2e-16 < 2e-16 -
S < 2e-16 < 2e-16 < 2e-16 < 2e-16
P value adjustment method: holm
答案 1 :(得分:0)
我希望这可以在黑暗中拍摄。通过这种方式,您应该能够针对每个种族比较公司之间的成对比较。实际上,您需要在多项式分布之间执行多个比较。 脚步: -数据从宽格式转换为长格式; -Poisson GLM的频次为结果,公司和种族为协变量; -emmeans软件包用于成对比较 最终输出是每个种族的公司之间的对数奇数差异。
data <- matrix(c(6073,1033,1711,3920,3431,2178,357,757,301,332,4204,
364,1006,337,553,7352,690,1356,1910,2066,4695,776,
1267,575,454,3761,352,529,130,658,5523,468,652,146,
312,5027,657,356,107,804,4650,311,674,78,599,4581,
192,581,114,335,1176,65,121,67,195,3841,274,289,71,
425,6489,1912,1784,1041,1434,1487,148,121,62,72,
4130,170,365,353,479,5181,2260,1023,219,502,1286,
1288,890,423,285,2536,289,359,61,424,6237,1504,
1117,179,911),ncol=5,byrow=TRUE)
colnames(data) <- c("White","Black","Hispanic","Asian","Unknown")
rownames(data) <- c("A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S")
data
typeof(data)
data <- as.data.frame(data)
library(tidyverse)
data2 <- data %>%
rownames_to_column(var="Firm") %>%
gather(key = Race, value = "n", White:Unknown, factor_key=F)
data2
fit <- glm(n ~ Firm+Race, data = data2, family = poisson)
fit
library(emmeans)
pairs(emmeans(fit, ~ Firm|Race))