2+3 => 5
5-2+5 => 8
...
我想到了这个
def f(l, k):
M= 0
temp = sum(l[0:k])
for i in range(1,k):
temp += a[l+1]-l[i-1]
if temp > M:
M = temp
return M
但是不幸的是,它仅适用于k = 2? 所以我有两个问题:
答案 0 :(得分:4)
您描述的想法是正确的,但是您的实现是错误的。
M
等效于下面的cumax
。它应该是
初始化为前k个项的总和,而不是0。k
数字开头的范围应为N - k + 1
,即大小为k的窗口序列中的最大位置。您的temp
等同于cusum
。 temp += a[l+1]-l[i-1]
行是错误的。我不知道您从哪里得到a
。一世
以为你的意思是temp += l[i + k] - l[i - 1]
。
def f(l, k):
assert len(l) >= k
# Start of max sum of k consecutive number
start_idx = 0
# Current max sum of k consecutive number
cumax = cusum = sum(l[:k])
# Slide a window of size k from second element onwards
N = len(l)
for i in range(1, N - k + 1):
# Subtract element before start of window and add rightmost element
cusum = cusum + l[i + k - 1] - l[i - 1]
# Update start of and latest max sum of k consecutive number if
# necessary
if cusum > cumax:
cumax = cusum
start_idx = i
return start_idx, cumax
时间复杂度为O(N),内存复杂度为O(1)。实际上,对于长序列,@ dobkind使用卷积的方法可能最快。
def f_convolve(l, k):
start_idx = np.argmax(np.convolve(l, np.ones(k,), 'valid'))
return start_idx, np.sum(l[start_idx : start_idx + k])
如果您有剩余的内存并且l
不太大,则此实现的效果甚至比前两个更好
def f_numpy_cusum(l, k):
cumsums = np.cumsum(l)
cumsums[k :] -= cumsums[: len(cumsums) - k ]
cumsums = cumsums[ k- 1:]
start = np.argmax(cumsums)
return start, np.sum(l[start : start + k])
上述3个函数的运行时间为len(l)
= 100000和k
= 2000 are
f
每个循环32.6毫秒+-78.5 us(平均开发标准-运行7次,每个循环10个循环)
f_convolve
26.3 ms +-每个循环183 us(平均+-标准开发,运行7次,每个循环10个)
f_numpy_cusum
每个循环718 us +-3.81 us(平均值+-标准开发的7次运行,每个循环1000次)
答案 1 :(得分:2)
为此,我们应该使用动态编程,并以O(n)
复杂性进行操作
from random import randint
test=[randint(1,10) for i in range(5)]
# find cumulative sum use np.cumsum or write is yourself
print(test)
cumsum=[0]*(len(test)+1)
cumsum[1]=test[0]
for i in range(2,len(test)+1):
cumsum[i]=cumsum[i-1]+test[i-1]
print(cumsum)
#define k
k=3
# m denotes the maximum element
m=0
for i in range(len(test)-k+1):
m=max(m,cumsum[k+i]-cumsum[i])
print(cumsum[k+i]-cumsum[i])
# the answer is printed
print(m)
输入
[10, 5, 1, 1, 7]
k=3
输出
16
答案 2 :(得分:2)
您可以按以下方式使用numpy.convolve
:
k = 2
max_sum = np.max(np.convolve([2,3,5,1,6], np.ones(k,), 'same'))
使用k=2000
和len(l)=100000
,此代码在我的i7机器上以0.04秒的速度运行:
from random import randint
import time
def test_max_sum(k, len_l):
num_trials = 100
total = 0
test = [randint(1, 10) for i in range(len_l)]
for i in range(num_trials):
start = time.clock()
max_sum = np.max(np.convolve(test, np.ones(k, ), 'same'))
end = time.clock()
total += end - start
total /= num_trials
print total
答案 3 :(得分:1)
这真的不是我的专长,但是将列表压缩在一起会不会很有效?
以下内容:
export type KeysOfType<T, TProp> = { [P in keyof T]: T[P] extends TProp ? P : never }[keyof T];
class A {
public prop1: number;
public prop2: string;
public prop3: string;
}
class B<O extends Record<K, string> & A, K extends string | number | symbol = KeysOfType<O, string> >
{
constructor() {
}
private prop: K;
private prop2: keyof A
public method(): void {
let o!: O;
let notTypedAsString = o[this.prop]; // if you hover over it it will be O[K]
notTypedAsString.bold();//but it behaves as string
o.prop1 // number, A memebrs that arae not strings still work as expected
}
}
new B<A>()
class A2 extends A {
public prop4: number;
public prop5: string;
}
new B<A2>()
返回from itertools import islice
l = [2,3,5,1,6]
def max_consecutive(ar, k=2):
combos = zip(*(islice(ar,i,None) for i in range(k)))
return max(map(sum, combos))
print(max_consecutive(l))
print(max_consecutive(l, k=3))
和8