我正在尝试从帖子Simpler population pyramid in ggplot2
重现简单的人口金字塔使用ggplot2
和dplyr
(而不是plyr
)。
以下是plyr
和种子
set.seed(321)
test <- data.frame(v=sample(1:20,1000,replace=T), g=c('M','F'))
require(ggplot2)
require(plyr)
ggplot(data=test,aes(x=as.factor(v),fill=g)) +
geom_bar(subset=.(g=="F")) +
geom_bar(subset=.(g=="M"),aes(y=..count..*(-1))) +
scale_y_continuous(breaks=seq(-40,40,10),labels=abs(seq(-40,40,10))) +
coord_flip()
工作正常。
但是如何用dplyr
生成相同的情节呢?该示例在plyr
语句中使用subset = .(g ==
。
我在dplyr::filter
尝试过以下操作,但收到错误:
require(dplyr)
ggplot(data=test,aes(x=as.factor(v),fill=g)) +
geom_bar(dplyr::filter(test, g=="F")) +
geom_bar(dplyr::filter(test, g=="M"),aes(y=..count..*(-1))) +
scale_y_continuous(breaks=seq(-40,40,10),labels=abs(seq(-40,40,10))) +
coord_flip()
Error in get(x, envir = this, inherits = inh)(this, ...) :
Mapping should be a list of unevaluated mappings created by aes or aes_string
答案 0 :(得分:5)
使用最新版本的dplyr
制作人口金字塔时,您可以避免使用plyr
和ggplot2
。
如果您计算了年龄 - 性别群体的大小,请使用答案here
如果您的数据是个人级别(就像您的那样),请使用以下内容:
set.seed(321)
test <- data.frame(v=sample(1:20,1000,replace=T), g=c('M','F'))
head(test)
# v g
# 1 20 M
# 2 19 F
# 3 5 M
# 4 6 F
# 5 8 M
# 6 7 F
library("ggplot2")
ggplot(data = test, aes(x = as.factor(v), fill = g)) +
geom_bar(data = subset(test, g == "F")) +
geom_bar(data = subset(test, g == "M"),
mapping = aes(y = - ..count.. ),
position = "identity") +
scale_y_continuous(labels = abs) +
coord_flip()
答案 1 :(得分:4)
通过在data
中指定参数geom_bar
来避免错误:
ggplot(data = test, aes(x = as.factor(v), fill = g)) +
geom_bar(data = dplyr::filter(test, g == "F")) +
geom_bar(data = dplyr::filter(test, g == "M"), aes(y = ..count.. * (-1))) +
scale_y_continuous(breaks = seq(-40, 40, 10), labels = abs(seq(-40, 40, 10))) +
coord_flip()
答案 2 :(得分:0)
要使用单个数据或微数据构建年龄金字塔,可以使用:
shinyApp(ui = ui, server = server)
在geom_histogram()中更改binwidth可以将数据分为更广泛的类别。
将binwidth更改为10并调整轴中断:
test <- data.frame(v=sample(1:100, 1000, replace=T), g=c('M','F'))
ggplot(data = test, aes(x = v, fill = g)) +
geom_histogram(data = subset(test, g == "F"), binwidth = 5, color="white", position = "identity") +
geom_histogram(data = subset(test, g == "M"), binwidth = 5, color="white", position = "identity",
mapping = aes(y = - ..count.. )) +
scale_x_continuous("Age", breaks = c(seq(0, 100, by=5))) +
scale_y_continuous("Population", breaks = seq(-30, 30, 10), labels = abs) +
scale_fill_discrete(name = "Sex") +
coord_flip() +
theme_bw()